Skip to main content
Log in

Applications and research advance of genome shuffling for industrial microbial strains improvement

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Genome shuffling, an efficient and practical strain improvement technology via recursive protoplasts fusion, can break through the limits of species even genus to accelerate the directed evolution of microbial strains, without requiring the comprehensively cognized genetic background and operable genetic system. Hence this technology has been widely used for many important strains to obtain the desirable industrial phenotypes. In this review, we introduce the procedure of genome shuffling, discuss the new aid strategies of genome shuffling, summarize the applications of genome shuffling for increasing metabolite yield, improving strain tolerance, enhancing substrate utilization, and put forward the outlook to the future development of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Cao XH, Hou LH, Lu MF, Wang CL, Zeng B (2010) Genome shuffling of Zygosaccharomyces rouxii to accelerate and enhance the flavour formation of soy sauce. J Sci Food Agric 90:281–285

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Chong XY, Zhang YY, Lv YY, Hu YS (2020) Genome shuffling of Bacillus velezensis for enhanced surfactin production and variation analysis. Curr Microbiol 77:71–78

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Song X, Qin Y, Qu Y (2009) Genome shuffling improves production of cellulase by Penicillium decumbens JU-A10. J Appl Microbiol 107:1837–1846

    Article  CAS  PubMed  Google Scholar 

  • Dai MH, Copley SD (2004) Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Appl Environ Microbiol 70:2391–2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Bondkly AMA (2012) Molecular identification using ITS sequences and genome shuffling to improve 2-deoxyglucose tolerance and xylanase activity of marine-derived fungus, Aspergillus sp. NRCF5. Appl Biochem Biotechnol 167:2160–2173

    Article  CAS  PubMed  Google Scholar 

  • El-Gendy MMAA, Al-Zahrani HAA, El-Bondkly AMA (2016) Genome shuffling of mangrove endophytic Aspergillus luchuensis MERV10 for improving the cholesterol-lowering agent lovastatin under solid state fermentation. Mycobiology 44:171–179

    Article  PubMed  PubMed Central  Google Scholar 

  • Fields FJ, Ostrand JT, Tran M, Mayfield SP (2019) Nuclear genome shuffling significantly increases production of chloroplast-based recombinant protein in Chlamydomonas reinhardtii. Algal Res 41:101523

    Article  Google Scholar 

  • Gong GL, Sun X, Liu XL, Hu W, Cao WR, Liu H, Liu WF, Li YZ (2007) Mutation and a high-throughput screening method for improving the production of Epothilones of Sorangium. J Ind Microbiol Biotechnol 34:615–623

    Article  CAS  PubMed  Google Scholar 

  • Gong JX, Zhao XM, Xing QR, Li F, Li HY, Chai L, Wang QY, Zheltikov A (2008) Femtosecond laser-induced cell fusion. Appl Phys Lett 92:093901

    Article  CAS  Google Scholar 

  • Gong JX, Zheng HJ, Wu ZJ, Chen T, Zhao XM (2009) Genome shuffling: progress and applications for phenotype improvement. Biotechnol Adv 27:996–1005

    Article  PubMed  Google Scholar 

  • Gu CK, Wang GY, Mai S, Wu P, Wu J, Wang G, Liu H, Zhang J (2017) ARTP mutation and genome shuffling of ABE fermentation symbiotic system for improvement of butanol production. Appl Microbiol Biotechnol 101:2189–2199

    Article  CAS  PubMed  Google Scholar 

  • Han GG, Song AA, Kim EB, Yoon SH, Bok JD, Cho CS, Kil DY, Kang SK, Choi YJ (2017) Improved antimicrobial activity of Pediococcus acidilactici against Salmonella Gallinarum by UV mutagenesis and genome shuffling. Appl Microbiol Biotechnol 101:5353–5363

    Article  CAS  PubMed  Google Scholar 

  • Hopwood DA, Chater KF (1980) Fresh approaches to antibiotic production. Philos Trans R Soc Lond B Biol Sci 290:313–328

    Article  CAS  PubMed  Google Scholar 

  • Hou L (2009) Novel methods of genome shuffling in Saccharomyces cerevisiae. Biotechnol Lett 31:671–677

    Article  CAS  PubMed  Google Scholar 

  • Hu S, You Y, Xia F, Liu J, Dai W, Liu J, Wang Y (2019) Genome shuffling improved acid-tolerance and succinic acid production of Actinobacillus succinogenes. Food Sci Biotechnol 28:817–822

    Article  CAS  PubMed  Google Scholar 

  • Huang QG, Zeng BD, Liang L, Wu SG, Huang JZ (2018) Genome shuffling and high-throughput screening of Brevibacterium flavum MDV1 for enhanced L-valine production. World J Microbiol Biotechnol 34:121

    Article  PubMed  CAS  Google Scholar 

  • Jetti KD, Reddy RGNS, Garlapab D, Nammi SK (2019) Improved ethanol productivity and ethanol tolerance through genome shuffling of Saccharomyces cerevisiae and Pichia stipitis. Int Microbiol 22:247–254

    Article  CAS  PubMed  Google Scholar 

  • John RP, Gangadharan D, Nampoothiri KM (2008) Genome shuffling of Lactobacillus delbrueckii mutant and Bacillus amyloliquefaciens through protoplasmic fusion for L-lactic acid production from starchy wastes. Bioresour Technol 99:8008–8015

    Article  CAS  PubMed  Google Scholar 

  • Kang JX, Chen XJ, Chen WR, Li MS, Fang Y, Li DS, Ren YZ, Liu DQ (2011) Enhanced production of pullulan in Aureobasidium pullulans by a new process of genome shuffling. Process Biochem 46:792–795

    Article  CAS  Google Scholar 

  • Lee B-U, Cho Y-S, Park S-C, Oh K-H (2009) Enhanced degradation of TNT by genome-shuffled Stenotrophomonas maltophilia OK-5. Curr Microbiol 59:346–351

    Article  CAS  PubMed  Google Scholar 

  • Li S, Chen X, Dong C, Zhao F, Tang L, Mao Z (2013) Combining genome shuffling and interspecific hybridization among Streptomyces improved epsilon-poly-L-lysine production. Appl Biochem Biotechnol 169:338–350

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Wen JP, Chen YL, Jia XQ (2013) Femtosecond laser-based mutagenesis strategy for micronomicin production enhancement of Micromonospora sagamiensis ATCC 21826. World J Microbiol Biotechnol 29:1121–1127

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Jiang C, Lin J, Zhuang Z, Kong W, Liu L, Huang Y, Duan Y, Zhu X (2020) Genome shuffling based on different types of ribosome engineering mutants for enhanced production of 10-membered enediyne tiancimycin-A. Appl Microbiol Biotechnol 104:4359–4369

    Article  CAS  PubMed  Google Scholar 

  • Luna-Flores CH, Palfreyman RW, Kromer JO, Nielsen LK, Marcellin E (2017) Improved production of propionic acid using genome shuffling. Biotechnol J 12:1600120

    Article  CAS  Google Scholar 

  • Magocha TA, Zabed H, Yang MM, Yun JH, Zhang HH, Qi XH (2018) Improvement of industrially important microbial strains by genome shuffling: current status and future prospects. Bioresour Technol 257:281–289

    Article  CAS  PubMed  Google Scholar 

  • Otte B, Grunwaldt E, Mahmoud O, Jennewein S (2009) Genome shuffling in Clostridium diolis DSM 15410 for improved 1,3-propanediol production. Appl Environ Microbiol 75:7610–7616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WP, Ryan CM, del Cardayre S (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20:707–712

    Article  CAS  PubMed  Google Scholar 

  • Pinel D, D’Aoust F, del Cardayre SB, Bajwa PK, Lee H, Martin VJJ (2011) Saccharomyces cerevisiae genome shuffling through recursive population mating leads to improved tolerance to spent sulfite liquor. Appl Environ Microbiol 77:4736–4743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi DJ, Wang CL, Wang KM (2009) Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 36:139–147

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Zhang M, Zhang L, Wang P, Jiang L, Deng H (2014) Xylose-fermenting Pichia stipitis by genome shuffling for improved ethanol production. Microb Biotechnol 7:90–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi JR, Zhu XY, Lu YJ, Zhao HZ, Lu FX, Lu ZX (2018) Improving Iturin A production of Bacillus amyloliquefaciens by genome shuffling and its inhibition against Saccharomyces cerevisiae in orange juice. Front Microbiol 9:2683

    Article  PubMed  PubMed Central  Google Scholar 

  • Skelley AM, Kirak O, Suh H, Jaenisch R, Voldman J (2009) Microfluidic control of cell pairing and fusion. Nat Methods 6:147–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snoek T, Nicolino MP, Van den Bremt S, Mertens S, Saels V, Verplaetse A, Steensels J, Verstrepen KJ (2015) Large-scale robot-assisted genome shuffling yields industrial Saccharomyces cerevisiae yeasts with increased ethanol tolerance. Biotechnol Biofuels 8:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steubing RW, Cheng S, Wright WH, Numajiri Y, Berns MW (1991) Laser induced cell fusion in combination with optical tweezers: the laser cell fusion trap. Cytometry 12:505–510

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li Y, Pei X, Yu L, Feng Y (2007) Genome-shuffling improved acid tolerance and L-lactic acid volumetric productivity in Lactobacillus rhamnosus. J Biotechnol 129:510–515

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Liu S, Li Y, Xu R, Lu C, Shen Y (2010) Protoplast mutation and genome shuffling induce the endophytic fungus Tubercularia sp. TF5 to produce new compounds. Curr Microbiol 61:254–260

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhang J, Wang X, Qi W, Dai Y (2012) Genome shuffling improves production of the low-temperature alkalophilic lipase by Acinetobacter johnsonii. Biotechnol Lett 34:145–151

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Zhang W, Xu W, Shen Y, Du L (2016) Optimization of genome shuffling for high-yield production of the antitumor deacetylmycoepoxydiene in an endophytic fungus of mangrove plants. Appl Microbiol Biotechnol 100:7491–7498

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang G, Zhao X, Ling J (2017) Genome shuffling improved the nucleosides production in Cordyceps kyushuensis. J Biotechnol 260:42–47

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Wu B, Qin H, Liu P, Qin Y, Duan G, Hu G, He M (2019) Genome shuffling enhances stress tolerance of Zymomonas mobilis to two inhibitors. Biotechnol Biofuels 12:288–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei P, Li Z, He P, Lin Y, Jiang N (2008) Genome shuffling in the ethanologenic yeast Candida krusei to improve acetic acid tolerance. Biotechnol Appl Biochem 49:113–120

    Article  CAS  PubMed  Google Scholar 

  • Wei K, Cao X, Li X, Wang C, Hou L (2012) Genome shuffling to improve fermentation properties of acetic acid bacterium by the improvement of ethanol tolerance. Int J Food Sci Technol 47:2184–2189

    Article  CAS  Google Scholar 

  • Xu F, Jin H, Li H, Tao L, Wang J, Lv J, Chen S (2012) Genome shuffling of Trichoderma viride for enhanced cellulase production. Ann Microbiol 62:509–515

    Article  CAS  Google Scholar 

  • Yi L, Peng Q, Liu D, Zhou L, Tang C, Zhou Y, Chai L (2019) Enhanced degradation of perfluorooctanoic acid by a genome shuffling-modified Pseudomonas parafulva YAB-1. Environ Technol 40:3153–3161

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Ma Y, Deng Y, Xu Z, Liu J, Zhao J, Dong J, Yu J, Chang Z (2016) Genome shuffling of Saccharomyces cerevisiae for enhanced glutathione yield and relative gene expression analysis using fluorescent quantitation reverse transcription polymerase chain reaction. J Microbiol Methods 127:188–192

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Pei X, Lei T, Wang Y, Feng Y (2008) Genome shuffling enhanced L-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. J Biotechnol 134:154–159

    Article  CAS  PubMed  Google Scholar 

  • Zeng WZ, Guo LK, Xu S, Chen J, Zhou JW (2020) High-throughput screening technology in industrial biotechnology. Trends Biotechnol 38:888–906

    Article  CAS  PubMed  Google Scholar 

  • Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WP, Del Cardayre SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644–646

    Article  CAS  PubMed  Google Scholar 

  • Zhang YF, Liu SY, Du YH, Feng WJ, Liu JH, Qiao JJ (2014) Genome shuffling of Lactococcus lactis subspecies lactis YF11 for improving nisin Z production and comparative analysis. J Dairy Sci 97:2528–2541

    Article  CAS  PubMed  Google Scholar 

  • Zhang GQ, Lin YP, Qi XN, Wang LX, He P, Wang QH, Ma YH (2015) Genome shuffling of the nonconventional yeast Pichia anomala for improved sugar alcohol production. Microb Cell Fact 14:112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao S, Tian CY, Du CM (2014) Production of hybrids of Streptomyces bikiniensis strain HD-087 by genome shuffling and enhancement of its bio-control activity against Fusarium oxysporum f. sp cucumerinum. J Hortic Sci Biotechnol 89:147–152

    Article  Google Scholar 

  • Zhao YP, Mu XQ, Xu Y (2014) Improvement in gamma-decalactone production by Yarrowia sp. after genome shuffling. Chem Pap 68:1030–1040

    CAS  Google Scholar 

  • Zhao YJ, Duan CC, Gao L, Yu X, Niu CH, Li SY (2017) Genome shuffling of Lactobacillus plantarum C88 improves adhesion. Biosci Biotechnol Biochem 81:184–193

    Article  CAS  PubMed  Google Scholar 

  • Zheng DQ, Wu XC, Wang PM, Chi XQ, Tao XL, Li P, Jiang XH, Zhao YH (2011) Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 38:415–422

    Article  CAS  PubMed  Google Scholar 

  • Zhong MC, Gong L, Zhou JH, Wang ZQ, Li YM (2013) Optical trapping of red blood cells in living animals with a water immersion objective. Opt Lett 38:5134–5137

    Article  PubMed  Google Scholar 

  • Zhu Z et al (2016) A new approach for breeding low-temperature-resistant Volvariella volvacea strains: genome shuffling in edible fungi. Biotechnol Appl Biochem 63:605–615

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Zhang J, Ji X, Fang Z, Wu Z, Chen J, Du G (2018) Evolutionary engineering of industrial microorganisms-strategies and applications. Appl Microbiol Biotechnol 102:4615–4627

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (2017YFC1600803), National natural science foundation project of China (31401543), Natural science foundation project of Henan province (182300410042), Innovative Research Team in University of Henan Province (19IRTSTHN008), Henan key laboratory of cereal resource transformation and utilization (PL2017005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Chen or Ke Bian.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Xin, QH., Ma, LM. et al. Applications and research advance of genome shuffling for industrial microbial strains improvement. World J Microbiol Biotechnol 36, 158 (2020). https://doi.org/10.1007/s11274-020-02936-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-020-02936-w

Keywords

Navigation