Skip to main content
Log in

Characterization of Methyltestosterone Degrading Bacteria Isolated from Tilapia Masculinizing Ponds: Metabolic Intermediate, Glucose Amendments Effects, and Other Hormones Transformation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

17α-Methyltestosterone (MT) is widely used synthetic androgenic steroid in the tilapia aquaculture industry for masculinization: a sex reversal process in which hormones are utilized to induce production of male fish. Although MT is beneficial for aquaculture, release of residual MT can cause adverse effects on wild organisms. The aims of this study were to identify MT-degrading bacteria and to characterize their degradation abilities under the conditions experienced in the environment. Nocardioides nitrophenolicus S303, Acinetobacter radioresistens B051, and Ochrobactrum haematophilum B052 were the most efficient MT-degrading bacterial strains, with the shortest degradation half-life of 10–70 h. The MT degradation by Acinetobacter and Ochrobactrum has not been reported before. After comparing their degradation rates and for reason of biosafety, N. nitrophenolicus S303 was selected for further study. Although this strain degraded MT and testosterones, it could not degrade estrogens (estrone, 17β-estradiol, nor 17α-ethinylestradiol). Glucose amendment did not affect the MT degradation rate. No metabolites with androgenic activity were observed after 264-h treatment with this strain under aerobic conditions. Methandrostenolone was found as the major intermediate during 39–90 h. This is the first report indicating the 1,2-dehydrogenase activity in steroid clevage in N. nitrophenolicus. Our study provides important information concerning the application of N. nitrophenolicus S303 to enhance MT degradation in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Abraham, J., & Silambarasan, S. (2016). Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol using a novel bacterium Ochrobactrum sp. JAS2: a proposal of its metabolic pathway. Pesticide Biochemistry and Physiology, 126, 13–21.

    CAS  Google Scholar 

  • Adnan, F., & Thanasupsin, S. P. (2016). Kinetic studies using a linear regression analysis for a sorption phenomenon of 17a-methyltestosterone by Salvinia cucullata in an active plant reactor. Environmental Engineering Research, 21, 384–392.

    Google Scholar 

  • Andersen, L,, Goto-Kazeto, R., Trant, J. M., Nash, J.P., Korsgaard, B., Bjerregaard, P. (2006). Short-term exposure to low concentrations of the synthetic androgen methyltestosterone affects vitellogenin and steroid levels in adult male zebrafish (Danio rerio). Aquatic Toxicology, 76 (3–4), 343–352

  • Arulazhagan, P., & Vasudevan, N. (2011). Biodegradation of polycyclic aromatic hydrocarbons by a halotolerant bacterial strain Ochrobactrum sp. VA1. Marine Pollution Bulletin, 62, 388–394.

    CAS  Google Scholar 

  • Baoprasertkul, P., Somridhivej, B., Rangsiyapirom, S., Somsiri, T. (2013) The determination of 17α-methyltestosterone in sex-reversed Tilapia, Inland Fisheries Research and Development Bureau, Department of Fisheries, Ministry of Agriculture and Cooperatives.

  • Barbosa, I. R., Lopes, S., Oliveira, R., Domingues, I., Soares, A. M. V. M., & Nogueira, A. J. A. (2013). Determination of 17α-methyltestosterone in freshwater samples of tilapia farming by high performance liquid chromatography. American Journal of Analytical Chemistry, 4, 207–211.

    Google Scholar 

  • Bergstrand, L. H., Cardenas, E., Holert, J., Van Hamme, J. D., & Mohn, W. W. (2016). Delineation of steroid-degrading microorganisms through comparative genomic analysis. mBio, 7, e00166–00116, 1–e00166–00116,13.

    Google Scholar 

  • Bezza, F. A., Beukes, M., & Chirwa, E. M. N. (2015). Application of biosurfactant produced by Ochrobactrum intermedium CN3 for enhancing petroleum sludge bioremediation. Process Biochemistry, 50, 1911–1922.

    CAS  Google Scholar 

  • Bie, S., Lu, F., Du, L., Qiu, Q., & Zhang, Y. (2008). Effect of phase composition on the bioconversion of methyltestosterone in a biphasic system. Journal of Molecular Catalysis, 55, 1–5.

    CAS  Google Scholar 

  • Chou, P.-H., Lee, C.-H., Ko, F.-C., Lin, Y.-J., Kawanishi, M., Yagi, T., & Li, I.-C. (2015). Detection of hormone-like and genotoxic activities in indoor dust from Taiwan using a battery of in vitro bioassays. Aerosol and Air Quality Research, 15, 1412–1421.

    CAS  Google Scholar 

  • Ding, J.-Y., Shiu, J.-H., Chen, W.-M., Chiang, Y.-R., & Tang, S.-L. (2016). Genomic insight into the host–endosymbiont relationship of Endozoicomonas montiporae CL-33T with its coral host. Frontiers in Microbiology, 7, 1–15.

    Google Scholar 

  • Donova, M. V., & Egorova, O. V. (2012). Microbial steroid transformations: current state and prospects. Applied Microbiology and Biotechnology, 94, 1423–1447.

    CAS  Google Scholar 

  • Druzhinina, A. V., Andryushina, V. A., Stytsenko, T. S., & Voishvillo, N. E. (2008). Conversion of 17α-methyltestosterone to methandrostenolone by the bacterium Pimelobacter simplex VKPM Ac-1632 with the presence of cyclodextrins. Applied Biochemistry and Microbiology, 44, 580–584.

    CAS  Google Scholar 

  • El-Greisy, Z. A., & El-Gamal, A. E. (2012). Monosex production of tilapia, Oreochromis niloticus using different doses of 17α-methyltestosterone with respect to the degree of sex stability after one year of treatment. Egyptian Journal of Aquatic Research, 38, 59–66.

    Google Scholar 

  • Fahrbach, M., Kuever, J., Remesch, M., Huber, B. E., Kämpfer, P., Dott, W., & Hollender, J. (2008). Steroidobacter denitrificans gen. nov., sp. nov., a steroidal hormone-degrading gammaproteobacterium. International Journal of Systematic and Evolutionary Microbiology, 58, 2215–2223.

    CAS  Google Scholar 

  • Fernández de las Heras, L., García Fernández, E., María Navarro Llorens, J., Perera, J., & Drzyzga, O. (2009). Morphological, physiological, and molecular characterization of a newly isolated steroid-degrading actinomycete, identified as Rhodococcus ruber strain Chol-4. Current Microbiology, 59, 548–553.

    Google Scholar 

  • Fessehaye, Y. (2006) Natural mating in Nile tilapia (Oreochromis niloticus L.) implications for reproductive success, inbreeding and cannibalism, Wageningen University.

    Google Scholar 

  • Fish and Aquatic Conservation Program (2019) 17α-methyltestosterone INAD #11–236. Service, U.S. Fish and Wildlife Service. https://www.fws.gov/fisheries/aadap/inads/17a-methyltestosterone-INAD-11-236.html .

  • Fitzpatrick, M. S., & Contreras Sánchez, W. M. (2000). Fate of methyltestosterone in the pond environment: detection of MT in soil after treatment with MT food. In K. McElwee, D. Burke, M. Niles, X. Cummings, & H. Egna (Eds.), Seventeenth Annual Technical Report (pp. 109–112). Oregon State University: Pond Dynamics/Aquaculture CRSP.

    Google Scholar 

  • Fitzpatrick, M. S., Contreras Sánchez, W. M., Milston, R. H., Hornick, R., & Feist, G. W. (1999). Detection of MT in aquarium water after treatment with MT food. In K. McElwee, D. Burke, M. Niles, & H. Egna (Eds.), Sixteenth Annual Technical Report (pp. 81–84). Oregon State University: Pond Dynamics/Aquaculture CRSP.

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (2019) Fisheries and aquaculture software. FishStatJ - software for fishery statistical time series, FAO Fisheries and Aquaculture Department. http://www.fao.org/fishery/statistics/software/fishstat/en .

  • Green, B. W., & Teichert-Coddington, D. R. (2000). Human food safety and environmental assessment of the use of 17α-methyltestosterone to produce male tilapia in the United States. Journal of the World Aquaculture Society, 31, 337–357.

    Google Scholar 

  • Homklin, S., Wattanodorn, T., Ong, S. K., & Limpiyakorn, T. (2009). Biodegradation of 17α-methyltestosterone and isolation of MT-degrading bacterium from sediment of Nile tilapia masculinization pond. Water Science and Technology, 59, 261–265.

    CAS  Google Scholar 

  • Homklin, S., Ong, S. K., & Limpiyakorn, T. (2011). Biotransformation of 17α-methyltestosterone in sediment under different electron acceptor conditions. Chemosphere, 82, 1401–1407.

    CAS  Google Scholar 

  • Homklin, S., Ong, S. K., & Limpiyakorn, T. (2012). Degradation of 17α-methyltestosterone by Rhodococcus sp. and Nocardioides sp. isolated from a masculinizing pond of Nile tilapia fry. Journal of Hazardous Materials, 221–222, 35–44.

    Google Scholar 

  • Ibero, J., Galán, B., Díaz, E., & García, J. L. (2019). Testosterone degradative pathway of Novosphingobium tardaugens. Genes, 10, 871–888.

    CAS  Google Scholar 

  • Janer, G., Lyssimachou, A., Bachmann, J., Oehlmann, J., Schulte-Oehlmann, U., & Porte, C. (2006). Sexual dimorphism in esterified steroid levels in the gastropod Marisa cornuarietis: The effect of xenoandrogenic compounds. Steroids, 71, 435–444.

    CAS  Google Scholar 

  • Johnstone, R., Macintosh, D. J., & Wright, R. S. (1983). Elimination of orally administered 17α-methyltestosterone by Oreochromis mossambicus (tilapia) and Salmo gairdneri (rainbow trout) juveniles. Aquaculture, 35, 249–257.

    CAS  Google Scholar 

  • Joy, S., Rahman, P. K. S. M., & Sharma, S. (2017). Biosurfactant production and concomitant hydrocarbon degradation potentials of bacteria isolated from extreme and hydrocarbon contaminated environments. Chemical Engineer, 317, 232–241.

    CAS  Google Scholar 

  • Khadivinia, E., Sharafi, H., Hadi, F., Zahiri, H. S., Modiri, S., Tohidi, A., et al. (2014). Cadmium biosorption by a glyphosate-degrading bacterium, a novel biosorbent isolated from pesticide-contaminated agricultural soils. Journal of Industrial and Engineering Chemistry, 20, 4304–4310.

    CAS  Google Scholar 

  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.

    CAS  Google Scholar 

  • Levy, H. R., & Talalay, P. (1959). Bacterial oxidation of steroids: I. Ring A Dehydrogenations by Intacts Cells. The Journal of Biological Chemistry, 234, 2009–2013.

    CAS  Google Scholar 

  • Li, M., Zhao, X., Zhang, X., Wu, D., & Leng, S. (2018). Biodegradation of 17β-estradiol by bacterial co-culture isolated from manure. Scientific Reports, 8, 3787–3795.

    Google Scholar 

  • Liu, S., Ying, G.-G., Zhou, L.-J., Zhang, R.-Q., Chen, Z.-F., & La, H.-J. (2012). Steroids in a typical swine farm and their release into the environment. Water Research, 46, 3754–3768.

    CAS  Google Scholar 

  • Mazzoli, R., Pessione, E., Giuffrida, M. G., Fattori, P., Barello, C., Giunta, C., & Lindley, N. D. (2007). Degradation of aromatic compounds by Acinetobacter radioresistens S13: growth characteristics on single substrates and mixtures. Archives of Microbiology, 188, 55–68.

    CAS  Google Scholar 

  • Megbowon, I., & Mojekwu, T. O. (2014). Tilapia sex reversal using methyl testosterone (MT) and its effect on fish, man and environment. Biotechnology Advances, 13, 213–216.

    CAS  Google Scholar 

  • Ministry of Public Health (2018) Announcement Subject: list of pathogens that are controlled by Section 18, http://blqs.dmsc.moph.go.th/assets/Bpat/PATratchakitcha182561.pdf .

  • Miyairi, S., & Fishman, J. (1985). Radiometric analysis of oxidative reactions in aromatization by placental microsomes. Presence of differential isotope effects. The Journal of Biological Chemistry, 260, 320–325.

    CAS  Google Scholar 

  • Mlalila, N., Mahika, C., Kalombo, L., Swai, H., & Hilonga, A. (2015). Human food safety and environmental hazards associated with the use of methyltestosterone and other steroids in production of all-male tilapia. Environmental Science and Pollution Research, 22, 4922–4931.

    CAS  Google Scholar 

  • Murray, C. M., Easter, M., Merchant, M., Rheubert, J. L., Wilson, K. A., Cooper, A., et al. (2016). Methyltestosterone alters sex determination in the American alligator (Alligator mississippiensis). General and Comparative Endocrinology, 236, 63–69.

    CAS  Google Scholar 

  • Navon-Venezia, S., Zosim, Z., Gottlieb, A., Legmann, R., Carmeli, S., Ron, E. Z., & Rosenberg, E. (1995). Alasan, a new bioemulsifier from Acinetobacter radioresistens. Applied and Environmental Microbiology, 61, 3240–3244.

    CAS  Google Scholar 

  • Nishimura, Y., Ino, T., & Iizuka, H. (1988). Acinetobacter radioresistens sp. nov. isolated from cotton and soil. International Journal of Systematic and Evolutionary Microbiology, 38, 209–211.

    Google Scholar 

  • Nishshanka, U., Chu, P.-S., Evans, E., Reimschuessel, R., Hasbrouck, N., Amarasinghe, K., & Jayasuriya, H. (2015). Tentative structural assignment of a Glucuronide metabolite of methyltestosterone in tilapia bile by liquid chromatography–quadrupole-time-of-flight mass spectrometry. Journal of Agricultural and Food Chemistry, 63, 5753–5760.

    CAS  Google Scholar 

  • Office of Agricultural Economics (2019) Information of agriculture production—tilapia fish, Ministry of Agriculture and Cooperatives. http://www.oae.go.th/ (in Thai).

  • Ong, S., Chotisukarn, P., & Limpiyakorn, T. (2012). Sorption of 17α-methyltestosterone onto soils and sediment. Water, Air, and Soil Pollution, 223, 3869–3875.

    CAS  Google Scholar 

  • Pandian, T. J., & Sheela, S. G. (1995). Hormonal induction of sex reversal in fish. Aquaculture, 138, 1–22.

    CAS  Google Scholar 

  • Payne, D. W., & Talalay, P. (1985). Isolation of novel microbial 3 alpha-, 3 beta-, and 17 beta-hydroxysteroid dehydrogenases. Purification, characterization, and analytical applications of a 17 beta-hydroxysteroid dehydrogenase from an Alcaligenes sp. The Journal of Biological Chemistry, 260, 13648–13655.

    CAS  Google Scholar 

  • Roh, H., & Chu, K.-H. (2010). A 17β-estradiol-utilizing bacterium, Sphingomonas strain KC8: part I—characterization and abundance in wastewater treatment plants. Environmental Science & Technology, 44, 4943–4950.

    CAS  Google Scholar 

  • Saveli, C. C., Levi, M., & Koeppe, J. (2010). Ochrobactrum anthropi septic arthritis: case report and implications in orthopedic infections. Infectious Disease Reports, 2, 5–6.

    Google Scholar 

  • Selzsam, B., Grote, K., Gericke, C., Niemann, L., Wittfoht, W., & Chahoud, I. (2005). Effects of methyltestosterone on reproduction in the Japanese quail (Coturnix coturnix japonica). Environmental Research, 99, 327–334.

    CAS  Google Scholar 

  • Shiizaki, K., Yoshikawa, T., Takada, E., Hirose, S., Ito-Harashima, S., Kawanishi, M., & Yagi, T. (2014). Development of yeast reporter assay for screening specific ligands of retinoic acid and retinoid X receptor subtypes. Journal of Pharmacological and Toxicological Methods, 69, 245–252.

    CAS  Google Scholar 

  • Shtratnikova, V. Y., Schelkunov, M. I., Fokina, V. V., Pekov, Y. A., Ivashina, T., & Donova, M. V. (2016). Genome-wide bioinformatics analysis of steroid metabolism-associated genes in Nocardioides simplex VKM Ac-2033D. Current Genetics, 62, 643–656.

    CAS  Google Scholar 

  • Simkins, S., & Alexander, M. (1984). Models for mineralization kinetics with the variables of substrate concentration and population density. Applied and Environmental Microbiology, 47, 1299–1306.

    CAS  Google Scholar 

  • Stumpe, B., & Marschner, B. (2009). Factors controlling the biodegradation of 17β-estradiol, estrone and 17α-ethinylestradiol in different natural soils. Chemosphere, 74, 556–562.

    CAS  Google Scholar 

  • Talalay, P., Dobson, M. M., & Tapley, D. F. (1952). Oxidative degradation of testosterone by adaptive enzymes. Nature, 170, 620–621.

    CAS  Google Scholar 

  • Tang, J., Wang, R., Niu, X., & Zhou, Q. (2010). Enhancement of soil petroleum remediation by using a combination of ryegrass (Lolium perenne) and different microorganisms. Soil and Tillage Research, 110, 87–93.

    Google Scholar 

  • The European Council (EC). (1996). Council Directive 96/22/EC of 29 April 1996 concerning the prohibition on the use in stockfarming of certain substances having a hormonal or thyrostatic action and of beta-agonists, and repealing Directives 81/602/EEC, 88/146/EEC and 88/299/EEC. Official Journal of the European Communities, 125, 3–9.

    Google Scholar 

  • Tourna, M., Stieglmeier, M., Spang, A., Könneke, M., Schintlmeister, A., Urich, T., et al. (2011). Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. PNAS, 108, 8420–8425.

    CAS  Google Scholar 

  • Vogt, G. (2007). Exposure of the eggs to 17α-methyl testosterone reduced hatching success and growth and elicited teratogenic effects in postembryonic life stages of crayfish. Aquatic Toxicology, 85, 291–296.

    CAS  Google Scholar 

  • Wang, Y., & Qian, P. Y. (2009). Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One, 4, e7401.

    Google Scholar 

  • Wang, P.-H., Yu, C.-P., Lee, T.-H., Lin, C.-W., Ismail, W., Wey, S.-P., et al. (2014). Anoxic androgen degradation by the denitrifying bacterium Sterolibacterium denitrificans via the 2,3-seco pathway. Applied and Environmental Microbiology, 80, 3442–3452.

    Google Scholar 

  • Wang, Y., Shao, H., Zhu, S., Tian, K., Qiu, Q., & Huo, H. (2019). Degradation of 17β-estradiol and products by a mixed culture of Rhodococcus equi DSSKP-R-001 and Comamonas testosteroni QYY20150409. Biotechnology & Biotechnological Equipment, 33, 268–277.

    CAS  Google Scholar 

  • Wang, P.-H., Chen, Y.-L., Wei, S.-S., Wu, K., Lee, T.-H., Wu, T.-Y., & Chiang, Y.-R. (2020). Retroconversion of estrogens into androgens by bacteria via a cobalamin-mediated methylation. PNAS, 117, 1395–1403.

    CAS  Google Scholar 

  • Watermann, B. T., Albanis, T. A., Dagnac, T., Gnass, K., Ole, K., Sakkas, V. A., & Wollenberger, L. (2013). Effects of methyltestosterone, letrozole, triphenyltin and fenarimol on histology of reproductive organs of the copepod Acartia tonsa. Chemosphere, 92, 544–554.

    CAS  Google Scholar 

  • Wright, E. S., Yilmaz, L. S., & Noguera, D. R. (2012). DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Applied and Environmental Microbiology, 78, 717–725.

    CAS  Google Scholar 

  • Xu, C., Yang, W., Wei, L., Huang, Z., Wei, W., & Lin, A. (2019). Enhanced phytoremediation of PAHs-contaminated soil from an industrial relocation site by Ochrobactrum sp. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-019-05830-7.

  • Yang, Y., Borch, T., Young, R. B., Goodridge, L. D., & Davis, J. G. (2010). Degradation kinetics of testosterone by manure-borne bacteria: influence of temperature, pH, glucose amendments, and dissolved oxygen. Journal of Environmental Quality, 39, 1153–1160.

    CAS  Google Scholar 

  • Yang, Y.-Y., Pereyra, L. P., Young, R. B., Reardon, K. F., & Borch, T. (2011). Testosterone-mineralizing culture enriched from swine manure: characterization of degradation pathways and microbial community composition. Environmental Science & Technology, 45, 6879–6886.

    CAS  Google Scholar 

  • Yang, F.-C., Chen, Y.-L., Tang, S.-L., Yu, C.-P., Wang, P.-H., Ismail, W., et al. (2016). Integrated multi-omics analyses reveal the biochemical mechanisms and phylogenetic relevance of anaerobic androgen biodegradation in the environment. The ISME Journal, 10, 1967–1983.

    CAS  Google Scholar 

  • Yoon, J.-H., & Park, Y.-H. (2006). The genus Nocardioides. In M. Dworkin, S. Falkow, E. Rosenberg, K. Schleifer, & W. Stackebrandt (Eds.), Prokaryotes (pp. 1099–1113). Singapore: Springer.

    Google Scholar 

  • Yoon, J.-H., Cho, Y.-G., Lee, S. T., Suzuki, K.-i., Nakase, T., & Park, Y.-H. (1999). Nocardioides nitrophenolicus sp. nov., a p-nitrophenol-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology, 49, 675–680.

    CAS  Google Scholar 

  • Yoon, S.-H., Ha, S.-M., Kwon, S., Lim, J., Kim, Y., Seo, H., & Chun, J. (2017). Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 67, 1613–1617.

    CAS  Google Scholar 

  • Young, R. B., Latch, D. E., Mawhinney, D. B., Nguyen, T.-H., Davis, J. C. C., & Borch, T. (2013). Direct photodegradation of androstenedione and testosterone in natural sunlight: inhibition by dissolved organic matter and reduction of endocrine disrupting potential. Environmental Science & Technology, 47, 8416–8424.

    CAS  Google Scholar 

  • Yu, C.-P., Roh, H., & Chu, K.-H. (2007). 17β-estradiol-degrading bacteria isolated from activated sludge. Environmental Science & Technology, 41, 486–492.

    CAS  Google Scholar 

  • Yu, Q., Geng, J., & Ren, H. (2019). Occurrence and fate of androgens in municipal wastewater treatment plants in China. Chemosphere, 237, 124371.

    CAS  Google Scholar 

  • Zhang, H.-X., Wang, K., Xu, Z.-X., Chen, G.-J., & Du, Z.-J. (2016). Nocardioides gilvus sp. nov., isolated from Namtso Lake. Antonie Van Leeuwenhoek, 109, 1367–1374.

    CAS  Google Scholar 

  • Zhang, J.-N., Ying, G.-G., Yang, Y.-Y., Liu, W.-R., Liu, S.-S., Chen, J., et al. (2018). Occurrence, fate and risk assessment of androgens in ten wastewater treatment plants and receiving rivers of South China. Chemosphere, 201, 644–654.

    CAS  Google Scholar 

  • Zhang, J. N., Yang, L., Zhang, M., Liu, Y. S., Zhao, J. L., He, L. Y., et al. (2019). Persistence of androgens, progestogens, and glucocorticoids during commercial animal manure composting process. The Science of the Total Environment, 665, 91–99.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Assoc. Prof. Dr. Tawan Limpiyakorn at Chulalongkorn University, Dr. Supreeda Homklin at University of Phayao, Dr. Sayoko Ito-Harashima at Osaka Prefecture University, Assoc. Prof. Philip D. Round at Mahidol University, and Assis. Prof. Dr. Tomohiro Tobino at University of Tokyo for their valuable advice during research experiments and manuscript preparation. In addition, we express our sincere thanks to the tilapia farms and their personnel for their participation and cooperation.

Code Availability

Not applicable

Funding

This project was financially supported by the Thailand Research Fund (TRF; Grant No. MRG5980134), the Office of Higher Education Commission (OHEC), and S&T Postgraduate Education and Research Development Office (PERDO) through the research program in Hazardous Substance Management in the Agricultural Industry by Center of Excellence on Hazardous Substance Management. The first author also received thesis scholarship support from The 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund). Some research equipments were supported by the King Mongkut’s University of Technology Thonburi 55th Anniversary Commemorative Fund and Faculty of Science, Mahidol University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parinda Thayanukul.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 332 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srikwan, P., Niamhom, B., Yagi, T. et al. Characterization of Methyltestosterone Degrading Bacteria Isolated from Tilapia Masculinizing Ponds: Metabolic Intermediate, Glucose Amendments Effects, and Other Hormones Transformation. Water Air Soil Pollut 231, 498 (2020). https://doi.org/10.1007/s11270-020-04859-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04859-6

Keywords

Navigation