Skip to main content
Log in

Experimental and Numerical Investigation on the Effect of the Tempcore Process Parameters on Microstructural Evolution and Mechanical Properties of Dual-Phase Steel Reinforcing Rebars

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

One of the most efficient and cheapest ways to improve steel reinforcement bars is the Tempcore process. In this study, the effects of water pressure, water temperature, bar diameter, and its initial temperature, as Tempcore process parameters on microstructural and mechanical properties of reinforcing rebars were numerical and experimental investigated by using the Taguchi experimental design method. Results showed that these Tempcore process parameters influence the cooling intensity, which causes the formation of martensite at the surface layer and fine-grained ferrite–pearlite at the core and improvement of tensile strength. All of the considered parameters strongly affect the volume fraction of ferrite and pearlite in the rebar center and thickness of the martensite layer, but among them, water pressure with a 59% impact has a more substantial effect. Ultimately, to figure out the mechanical characteristics of hot rolled and optimal sample’ rebar, tensile tests were conducted. Outcomes displayed that the Tempcore process increases the yield and ultimate tensile strengths as much as 1.5 and 1.3 times, respectively, but slightly decreases the elongation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig.7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.R. Akbarpour, Mater. Lett. 61, 1023 (2007)

    Article  CAS  Google Scholar 

  2. P. Kumar, K. Prasanna, K. Behera, S. Misra, Met. Mater. Int. 25, 1209 (2019)

    Article  Google Scholar 

  3. M. Hajisafari, S. Nategh, H. Yoozbashizadeh, A. Ekrami, J. Iron Steel Res. Int. 20, 66 (2013)

    Article  CAS  Google Scholar 

  4. D. Song, J. Hao, F. Yang, H. Chen, N. Liang, Y. Wu, J. Zhang, H. Ma, E.E. Klu, B. Gao et al., J. Alloys Compd. 809, 151787 (2019)

    Article  CAS  Google Scholar 

  5. A. Ebrahimian, S.S.G. Banadkouki, J. Alloys Compd. 708, 43 (2017)

    Article  CAS  Google Scholar 

  6. M. Rocha, E. Brühwiler, A. Nussbaumer, J. Mater. Civ. Eng. 28, 4016012 (2016)

    Article  Google Scholar 

  7. H. Song, V. Saraswathy, Metals Mater. Int. 12, 323 (2006)

    Article  CAS  Google Scholar 

  8. K. Bandyopadhyay, J. Lee, J.-H. Shim, B. Hwang, M.-G. Lee, Mater. Sci. Eng. A Struct. 745, 39 (2019)

    Article  CAS  Google Scholar 

  9. J. Nikolaou, G.D. Papadimitriou, Int. J. Impact Eng. 31, 1065 (2005)

    Article  Google Scholar 

  10. G. Riganti, E. Cadoni, Mater. Des. 57, 156 (2014)

    Article  CAS  Google Scholar 

  11. E. Cadoni, M. Dotta, D. Forni, N. Tesio, C. Albertini, Mater. Des. 49, 657 (2013)

    Article  CAS  Google Scholar 

  12. M. Rocha, S. Michel, E. Brühwiler, A. Nussbaumer, Mater. Struct. 49, 1723 (2016)

    Article  CAS  Google Scholar 

  13. Y. Lv, G. Sheng, Z. Huang, Constr. Build. Mater. 48, 67 (2013)

    Article  Google Scholar 

  14. J.B. Mander, F.D. Panthaki, A. Kasalanati, J. Mater. Civ. Eng. 6, 453 (1994)

    Article  CAS  Google Scholar 

  15. R. Felicetti, P.G. Gambarova, A. Meda, Constr. Build. Mater. 23, 3546 (2009)

    Article  Google Scholar 

  16. H. Khalifa, G.M. Megahed, R.M. Hamouda, M.A. Taha, J. Mater. Process Technol. 230, 244 (2016)

    Article  CAS  Google Scholar 

  17. C.S. Park, S.W. Bae, J.R. Cho, H. Lee, Y. Kim, Y.H. Moon, Appl. Therm. Eng. 167, 114699 (2020)

    Article  Google Scholar 

  18. P.J. Oliveira, F.T.D. Pinho, G.A. Pinto, J. Non-Newtonian Fluid 79, 1 (1998)

    Article  CAS  Google Scholar 

  19. F.P. Incropera, A.S. Lavine, T.L. Bergman, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, 8th edn. (Wiley, New York, 2018), pp. 35–125

    Google Scholar 

  20. S. Hosny, M.A.H. Gepreel, M.G. Ibrahim, A.R. Bassuony, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00685-x

    Article  Google Scholar 

  21. P.C. Campbell, E.B. Hawbolt, J.K. Brimacombe, Metall. Mater. Trans. A 22, 769 (1991)

    Google Scholar 

  22. E. Maleki, O. Unal, K. Reza Kashyzadeh, Met. Mater. Int. 25, 1436 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Akbarpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbarpour, M.R., Mashhuriazar, A. & Daryani, M. Experimental and Numerical Investigation on the Effect of the Tempcore Process Parameters on Microstructural Evolution and Mechanical Properties of Dual-Phase Steel Reinforcing Rebars. Met. Mater. Int. 27, 4074–4083 (2021). https://doi.org/10.1007/s12540-020-00840-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00840-4

Keywords

Navigation