Skip to main content

Advertisement

Log in

Dual Antifouling Mechanisms Induced by Cupric Ions and Needle-Like Alumina in Arc-Sprayed Composite Coatings

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Aluminium-polymethyl methacrylate-copper (Al-PMMA-Cu) composite coatings were developed using cored wire arc spraying. The bacteria Bacillus sp. was used to evaluate the antifouling performances of the coatings. The microstructures and antifouling mechanisms of the coatings were investigated and discussed. The results show that the composite coatings presented improved antifouling performances, and two antifouling mechanisms were explored. On the one hand, the Cu nano-particles were released to seawater due to corrosion of the Al components, converted to cupric ions, and killed the bacteria. Meanwhile, oxidation of Al was accelerated due to Cu-Al galvanic reaction, and the needle-like corrosion products were formed, which pierced the cell membranes and killed the bacteria. The effects of the PMMA on the electrochemical properties of the coatings were also evaluated. The results show that the sealing function of the PMMA components enhanced the corrosion resistance of the Al-PMMA-Cu coatings. This investigation shed light on one-step construction of antifouling and anticorrosion layers for marine applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.M. Yebra, S. Kiil, and K. Dam-Johansen, Antifouling Technology—Past, Present and Future Steps Towards Efficient and Environmentally Friendly Antifouling Coatings, Prog. Org. Coat., 2004, 50(2), p 75-104

    Article  CAS  Google Scholar 

  2. I. Banerjee, R.C. Pangule, and R.S. Kane, Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms, Adv. Mater., 2011, 23(6), p 690-718

    Article  CAS  Google Scholar 

  3. O. Sarikaya, S. Anik, S. Aslanlar, S.C. Okumus, and E. Celik, Al-Si/B4C Composite Coatings on Al-Si Substrate by Plasma Spray Technique, Mater. Des., 2007, 28(9), p 2443-2449

    Article  CAS  Google Scholar 

  4. F. Ahnia and B. Demri, Evaluation of Aluminum Coatings in Simulated Marine Environment, Surf. Coat. Technol., 2013, 220, p 232-236

    Article  CAS  Google Scholar 

  5. X. Wang, H. Zhao, S. Wu, X. Suo, X. Wei, and H. Li, Aluminum-Polyethylene Composite Coatings with Self-sealing Induced Anti-corrosion Performances, J. Mater. Process. Technol., 2020, 282, p 116642

    Article  CAS  Google Scholar 

  6. Y. Liu, X. Suo, Z. Wang, Y. Gong, X. Wang, and H. Li, Developing Polyimide-Copper Antifouling Coatings with Capsule Structures for Sustainable Release of Copper, Mater. Des., 2017, 130, p 285-293

    Article  CAS  Google Scholar 

  7. Z. Jia, Y. Liu, Y. Wang, Y. Gong, P. Jin, X. Suo, and H. Li, Flame Spray Fabrication of Polyethylene-Cu Composite Coatings with Enwrapped Structures: A New Route for Constructing Antifouling Layers, Surf. Coat. Technol., 2017, 309, p 872-879

    Article  CAS  Google Scholar 

  8. X. He, X. Suo, X. Bai, C. Yuan, and H. Li, Functionalizing Aluminum Substrata by Quaternary Ammonium for Antifouling Performances, Appl. Surf. Sci., 2018, 440, p 300-307

    Article  CAS  Google Scholar 

  9. S. Sharma, Y.A. Jaimes-Lizcano, R.B. McLay, P.C. Cirino, and J.C. Conrad, Subnanometric Roughness Affects the Deposition and Mobile Adhesion of Escherichia coli on Silanized Glass Surfaces, Langmuir, 2016, 32(21), p 5422-5433

    Article  CAS  Google Scholar 

  10. S. Hou, H. Gu, C. Smith, and D. Ren, Microtopographic Patterns Affect Escherichia coli Biofilm Formation on Poly(dimethylsiloxane) Surfaces, Langmuir, 2011, 27(6), p 2686-2691

    Article  CAS  Google Scholar 

  11. A. Sakamoto, Y. Terui, C. Horie, T. Fukui, T. Masuzawa, S. Sugawara, K. Shigeta, T. Shigeta, K. Igarashi, and K. Kashiwagi, Antibacterial Effects of Protruding and Recessed Shark Skin Micropatterned Surfaces of Polyacrylate Plate with A Shallow Groove, FEMS Microbiol. Lett., 2014, 361(1), p 10-16

    Article  CAS  Google Scholar 

  12. X. Li, G.S. Cheung, G.S. Watson, J.A. Watson, S. Lin, L. Schwarzkopf, and D.W. Green, The Nanotipped Hairs of Gecko Skin and Biotemplated Replicas Impair and/or Kill Pathogenic Bacteria with High Efficiency, Nanoscale, 2016, 8(45), p 18860-18869

    Article  CAS  Google Scholar 

  13. D.P. Linklater, N.H.K. Duy, C.M. Bhadra, S. Juodkazis, and E.P. Ivanova, Influence of Nanoscale Topology on Bactericidal Efficiency of Black Silicon Surfaces, Nanotechnology, 2017, 28(24), p 245301

    Article  Google Scholar 

  14. ASTM D1141-98(2003), Standard Practice for the Preparation of Substitute Ocean Water, ASTM International, West Conshohocken, PA, 2003.

  15. J.D. Buck and R.C. Cleverdon, The Spread Plate as A Method for The Enumeration of Marine Bacteria, Limnol. Oceanogr., 1960, 5(1), p 78-80

    Article  Google Scholar 

  16. A. Abedini, A. Pourmousa, S. Chandra, and J. Mostaghimi, Effect of Substrate Temperature on the Properties of Coatings and Splats Deposited by Wire Arc Spraying, Surf. Coat. Technol., 2006, 201(6), p 3350-3358

    Article  CAS  Google Scholar 

  17. N. George, M. Mahon, and A. McDonald, Bactericidal Performance of Flame-Sprayed Nanostructured Titania-Copper Composite Coatings, J. Therm. Spray Technol., 2010, 19(5), p 1042-1053

    Article  CAS  Google Scholar 

  18. K. Bohinc, G. Drazic, R. Fink, M. Oder, M. Jevsnik, D. Nipic, K. Godic-Torkar, and P. Raspor, Available Surface Dictates Microbial Adhesion Capacity, Int. J. Adhes. Adhes., 2014, 50, p 265-272

    Article  CAS  Google Scholar 

  19. G. Kear, B.D. Barker, and F.C. Walsh, Electrochemical Corrosion of Unalloyed Copper in Chloride Media—A Critical Review, Corros. Sci., 2004, 46(1), p 109-135

    Article  CAS  Google Scholar 

  20. T. Ge, W. Zhao, Y. He, X. Wu, Y. Wu, Y. Wu, and X. Ci, Contrasting the Electrochemical Behaviors of Graphene Film with Hexagonal Boron Nitride Film Before and After Modification with Stearic Acid on Cu in 3.5 wt% NaCl Solution, Surf. Topogr. Metrol. Prop., 2019, 7(4), p 045008

    Article  Google Scholar 

  21. C. Cervantes and F. Gutierrez-Corona, Copper Resistance Mechanisms in Bacteria and Fungi, FEMS Microbiol. Rev., 1994, 14(2), p 121-137

    Article  CAS  Google Scholar 

  22. P.C. Liu, J.H. Hsieh, C. Li, Y.K. Chang, and C.C. Yang, Dissolution of Cu Nanoparticles and Antibacterial Behaviors of TaN-Cu Nanocomposite Thin Films, Thin Solid Films, 2009, 517(17), p 4956-4960

    Article  CAS  Google Scholar 

  23. D.W. Green, K.K.H. Lee, J.A. Watson, H.Y. Kim, K.S. Yoon, E.J. Kim, J.M. Lee, G.S. Watson, and H.S. Jung, High Quality Bioreplication of Intricate Nanostructures from A Fragile Gecko Skin Surface with Bactericidal Properties, Sci. Rep., 2017, 7(1), p 41023

    Article  CAS  Google Scholar 

  24. W. Yang, J. Li, P. Zhou, L. Zhu, and H. Tang, Superhydrophobic Copper Coating: Switchable Wettability, on-Demand Oil-Water Separation, and Antifouling, Chem. Eng. J., 2017, 327, p 849-854

    Article  CAS  Google Scholar 

  25. J. Zhang and Y. Han, A Topography/Chemical Composition Gradient Polystyrene Surface: Toward the Investigation of the Relationship Between Surface Wettability and Surface Structure and Chemical Composition, Langmuir, 2008, 24(3), p 796-801

    Article  Google Scholar 

  26. L. Feng, Y. Zhang, Y. Cao, X. Ye, and L. Jiang, The Effect of Surface Microstructures and Surface Compositions on the Wettabilities of Flower Petals, Soft Matter, 2011, 7(6), p 2977-2980

    Article  CAS  Google Scholar 

  27. Z. Li and Z. Guo, Bioinspired Surfaces with Wettability for Antifouling Application, Nanoscale, 2019, 11(47), p 22636-22663

    Article  CAS  Google Scholar 

  28. C.H. Xue, X.J. Guo, J.Z. Ma, and S.T. Jia, Fabrication of Robust and Antifouling Superhydrophobic Surfaces via Surface-Initiated Atom Transfer Radical Polymerization, ACS Appl. Mater. Interfaces., 2015, 7(15), p 8251-8259

    Article  CAS  Google Scholar 

  29. J.K. Pi, H.C. Yang, L.S. Wan, J. Wu, and Z.K. Xu, Polypropylene Microfiltration Membranes Modified with TiO2 Nanoparticles for Surface Wettability and Antifouling Property, J. Membr. Sci., 2016, 500, p 8-15

    Article  CAS  Google Scholar 

  30. S. Qiu, W. Li, W. Zheng, H. Zhao, and L. Wang, Synergistic Effect of Polypyrrole-Intercalated Graphene for Enhanced Corrosion Protection of Aqueous Coating in 3.5% NaCI, Solution, ACS Appl. Mater. Interfaces, 2017, 9(39), p 34294-34304

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China [21705158]; the National Key Research and Development Program of Zhejiang Province [2015C01036]; and the International Scientific, Technological Cooperation Project of Ningbo [2016D10012].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinkun Suo or Hua Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 484 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, X., Huang, Q. et al. Dual Antifouling Mechanisms Induced by Cupric Ions and Needle-Like Alumina in Arc-Sprayed Composite Coatings. J Therm Spray Tech 29, 1784–1791 (2020). https://doi.org/10.1007/s11666-020-01076-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01076-9

Keywords

Navigation