Skip to main content

Advertisement

Log in

Finite Element Modeling of Single-Particle Impacts for the Optimization of Antimicrobial Copper Cold Spray Coatings

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Prior work has demonstrated greater antipathogenic efficacy concerning the nanostructured copper cold spray coatings versus conventional copper cold spray coatings, while both the nanostructured and conventional cold spray coatings maintain greater contact killing/inactivation rates relative to other thermal spray deposition methods. Recent work has more heavily focused upon the nanostructured cold spray coatings greater efficacy. However, the antimicrobial efficacy of conventional copper cold spray coatings may be improved upon by way of identifying processing parameters that yield microstructures with the greatest concentration of atomic copper ion diffusion pathways. Since ideal processing parameters for a given application can be computed in silico via finite element analysis methods, the fundamental computational frameworks for doing so using the Johnson–Cook and Preston–Tonks–Wallace plasticity models. Modeled single-particle impact morphology outputs were compared with experimental microstructures using scanning electron microscopy and optical microscopy. The computed von Mises flow stresses associated with the two plasticity models were compared with traditionally static nanoindentation data as well as dynamic spherical nanoindentation stress–strain curves. Continued work with the finite element analysis framework developed herein will enable the best cold spray parameters to be identified for optimized antimicrobial properties as a function of deformation-mediated microstructures while still maintaining the structural integrity of the deposited material. Subsequent work will extend the finite element analysis models to multi-particle impacts when spray-dried and gas-atomized copper powder particles have been appropriately meshed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. V.K. Champagne and D.J. Helfritch, A Demonstration of the Antimicrobial Effectiveness of Various Copper Surfaces, J. Biol. Eng., 2013, 7(1), p 8

    CAS  Google Scholar 

  2. C. Massar, K. Tsaknopoulos, B.C. Sousa, J. Grubbs, and D.L. Cote, Heat Treatment of Recycled Battlefield Stainless-Steel Scrap for Cold Spray Applications, JOM, 2020, 72, p 3080-3089

  3. B.C. Sousa, C.E. Walde, V.K. Champagne, and D.L. Cote, Initial Observation of Grain Orientation Dependent Nanoindentation Hardness of Al 6061 Gas-Atomized Powder, Int. J. Metall. Met. Phys., 2020, 5(1), p 050

    Google Scholar 

  4. K. Sundberg and V. Champagne, Effectiveness of Nanomaterial Copper Cold Spray Surfaces on Inactivation of Influenza A Virus, J. Biotechnol. Biomater., 2015, 05(04), p 1

    Google Scholar 

  5. B. Sousa, K. Sundberg, C. Massar, V. Champagne, and D. Cote, Spherical Nanomechanical Characterization of Novel Nanocrystalline Cu Cold Spray Manufactured Materials, Vol 2019, 2019

  6. B.C. Sousa, K.L. Sundberg, M.A. Gleason, and D.L. Cote, Understanding the Antipathogenic Performance of Nanostructured and Conventional Copper Cold Spray Material Consolidations and Coated Surfaces, Crystals, 2020, 10(6), p 504

    CAS  Google Scholar 

  7. K. Sundberg, Application of Materials Characterization, Efficacy Testing, and Modeling Methods on Copper Cold Spray Coatings for Optimized Antimicrobial Properties, Worcester Polytechnic Institute, Worcester, 2019

    Google Scholar 

  8. K. Sundberg, The Effect of Corrosion on Conventional and Nanomaterial Copper Cold Spray Surfaces for Antimicrobial Applications, Biomed. J. Sci. Tech. Res., 2019, 22(3), p 16753-16763

    Google Scholar 

  9. K. Sundberg, M. Gleason, B. Haddad, V.K. Champagne, C. Brown, R.D. Sisson, and D. Cote, The Effect of Nano-Scale Surface Roughness on Copper Cold Spray Inactivation of Influenza A Virus, Int. J. Nanotechnol. Med. Eng., 2019, 4, p 33-40

    Google Scholar 

  10. O. Mishchenko, V. Filatova, M. Vasylyev, V. Deineka, and M. Pogorielov, Chemical and Structural Characterization of Sandlasted Surface of Dental Implant Using ZrO2 Particle with Different Shape, Coatings, 2019, 9(4), p 223

    Google Scholar 

  11. F.-P. Lee, D.-J. Wang, L.-K. Chen, C.-M. Kung, Y.-C. Wu, K.-L. Ou, and C.-H. Yu, Antibacterial Nanostructured Composite Films for Biomedical Applications: Microstructural Characteristics, Biocompatibility, and Antibacterial Mechanisms, Biofouling, 2013, 29(3), p 295-305

    CAS  Google Scholar 

  12. J.O. Noyce, H. Michels, and C.W. Keevil, Inactivation of Influenza A Virus on Copper versus Stainless Steel Surfaces, Appl. Environ. Microbiol., 2007, 73(8), p 2748-2750

    CAS  Google Scholar 

  13. C.E. Santo, N. Taudte, D.H. Nies, and G. Grass, Contribution of Copper Ion Resistance to Survival of Escherichia Coli on Metallic Copper Surfaces, Appl. Environ. Microbiol., 2008, 74(4), p 977-986

    CAS  Google Scholar 

  14. J.M. Schreiber, Finite Element Implementation of the Preston–Tonks–Wallace Plasticity Model and Energy Based Bonding Parameter for the Cold Spray Process, Pennsylvania State University, State College, 2016

    Google Scholar 

  15. G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21(1), p 31-48

    Google Scholar 

  16. D.L. Preston, D.L. Tonks, and D.C. Wallace, Model of Plastic Deformation for Extreme Loading Conditions, J. Appl. Phys., 2003, 93(1), p 211-220

    CAS  Google Scholar 

  17. S. Kardes and C. Choi, Determining the Flow Stress Curve with Yield and Ultimate Tensile Strengths. Pt.I: Important Data from the Tensile Test, Stamp. J., 2011, Retrieved from https://www.thefabricator.com/stampingjournal/article/metalsmaterials/

  18. S. Kardes and C. Choi, Determining the Flow Stress Curve with Yield and Ultimate Tensile Strengths. Pt.II: Using the Curve for FE Simulation, Stamp. J., 2011, Retrieved from https://www.thefabricator.com/stampingjournal/article/metalsmaterials/

  19. M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch, Computational Analysis of the Interfacial Bonding between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219(3–4), p 211-227

    CAS  Google Scholar 

  20. P.C. King, G. Bae, S.H. Zahiri, M. Jahedi, and C. Lee, An Experimental and Finite Element Study of Cold Spray Copper Impact onto Two Aluminum Substrates, J. Therm. Spray Technol., 2010, 19(3), p 620-634

    CAS  Google Scholar 

  21. E. Broitman, Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview, Tribol. Lett., 2017, 65(1), p 23

    Google Scholar 

  22. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564-1583

    CAS  Google Scholar 

  23. J. Hay, Introduction to Instrumented Indentation Testing, Exp. Tech., 2009, 33(6), p 66-72

    Google Scholar 

  24. S.C. Krishna, N.K. Gangwar, A.K. Jha, and B. Pant, On the Prediction of Strength from Hardness for Copper Alloys, J. Mater., 2013, 2013, p 1-6

    Google Scholar 

  25. W.D. Nix and H. Gao, Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity, J. Mech. Phys. Solids, 1998, 46(3), p 411-425

    CAS  Google Scholar 

  26. S.J. Vachhani, R.D. Doherty, and S.R. Kalidindi, Effect of the Continuous Stiffness Measurement on the Mechanical Properties Extracted Using Spherical Nanoindentation, Acta Mater., 2013, 61(10), p 3744-3751

    CAS  Google Scholar 

  27. J.K. Engels, S. Gao, W. Amin, A. Biswas, A. Kostka, N. Vajragupta, and A. Hartmaier, Indentation Size Effects in Spherical Nanoindentation Analyzed by Experiment and Non-Local Crystal Plasticity, Materialia, 2018, 3, p 21-30

    Google Scholar 

  28. S.R. Kalidindi and S. Pathak, Determination of the Effective Zero-Point and the Extraction of Spherical Nanoindentation Stress-Strain Curves, Acta Mater., 2008, 56(14), p 3523-3532

    CAS  Google Scholar 

  29. S. Pathak, J. Shaffer, and S. Kalidindi, Determination of an Effective Zero-Point and Extraction of Indentation Stress-Strain Curves without the Continuous Stiffness Measurement Signal, Scr. Mater., 2009, 60(6), p 439-442

    CAS  Google Scholar 

  30. A.J. Moseson, S. Basu, and M.W. Barsoum, Determination of the Effective Zero Point of Contact for Spherical Nanoindentation, J. Mater. Res., 2008, 23(1), p 204-209

    CAS  Google Scholar 

  31. S. Pathak, Development and Validation of a Novel Data Analysis Procedure for Spherical Nanoindentation, PhD. thesis, Drexel University, (2009)

  32. S. Pathak and S.R. Kalidindi, Spherical Nanoindentation Stress–Strain Curves, Mater. Sci. Eng. R Rep., 2015, 91, p 1-36

    Google Scholar 

  33. A. Leitner, V. Maier-Kiener, and D. Kiener, Essential Refinements of Spherical Nanoindentation Protocols for the Reliable Determination of Mechanical Flow Curves, Mater. Des., 2018, 146, p 69-80

    Google Scholar 

  34. P. Chivavibul, M. Watanabe, S. Kuroda, J. Kawakita, M. Komatsu, K. Sato, and J. Kitamura, Effects of Particle Strength of Feedstock Powders on Properties of Warm-Sprayed WC-Co Coatings, J. Therm. Spray Technol., 2011, 20(5), p 1098-1109

    CAS  Google Scholar 

  35. L.H. He and M.V. Swain, Nanoindentation Derived Stress–Strain Properties of Dental Materials, Dent. Mater., 2007, 23(7), p 814-821

    CAS  Google Scholar 

  36. J. Dean, J.M. Wheeler, and T.W. Clyne, Use of Quasi-Static Nanoindentation Data to Obtain Stress–Strain Characteristics for Metallic Materials, Acta Mater., 2010, 58(10), p 3613-3623

    CAS  Google Scholar 

  37. S. Basu, A. Moseson, and M.W. Barsoum, On the Determination of Spherical Nanoindentation Stress–Strain Curves, J. Mater. Res., 2006, 21(10), p 2628-2637

    CAS  Google Scholar 

  38. G.R. Johnson and W.H. Cook, A Constitutive Model and Data from Metals Subjected to Large Strains, High Strain Rates and High Temperatures, in Proceedings of 7th International Symposium on Ballistics, The Hague, Netherlands (1983)

  39. H. Assadi, I. Irkhin, H. Gutzmann, F. Gärtner, M. Schulze, M. Villa Vidaller, and T. Klassen, Determination of Plastic Constitutive Properties of Microparticles through Single Particle Compression, Adv. Powder Technol., 2015, 26(6), p 1544-1554

    CAS  Google Scholar 

  40. W. Li, K. Yang, D. Zhang, and X. Zhou, Residual Stress Analysis of Cold-Sprayed Copper Coatings by Numerical Simulation, J. Therm. Spray Technol., 2016, 25(1–2), p 131-142

    CAS  Google Scholar 

  41. L. Venkatesh, N.M. Chavan, and G. Sundararajan, The Influence of Powder Particle Velocity and Microstructure on the Properties of Cold Sprayed Copper Coatings, J. Therm. Spray Technol., 2011, 20(5), p 1009-1021

    CAS  Google Scholar 

  42. P. Chivavibul, M. Watanabe, S. Kuroda, J. Kawakita, M. Komatsu, K. Sato, and J. Kitamura, Effects of Particle Strength of Feedstock Powders on Properties of Warm-Sprayed WC-Co Coatings, J. Therm. Spray Technol. (2011)

  43. V.Y. Gertsman, M. Hoffmann, H. Gleiter, and R. Birringer, The Study of Grain Size Dependence of Yield Stress of Copper for a Wide Grain Size Range, Acta Metall. Mater., 1994, 42(10), p 3539-3544

    CAS  Google Scholar 

  44. W. Yan, C.L. Pun, and G.P. Simon, Conditions of Applying Oliver–Pharr Method to the Nanoindentation of Particles in Composites, Compos. Sci. Technol., 2012, 72(10), p 1147-1152

    CAS  Google Scholar 

  45. G. Antipas, Gas Atomization of Aluminium Melts: Comparison of Analytical Models, Metals (Basel), 2012, 2(2), p 202-210

    CAS  Google Scholar 

  46. A. Ünal, Effect of Processing Variables on Particle Size in Gas Atomization of Rapidly Solidified Aluminium Powders, Mater. Sci. Technol., 1987, 3(12), p 1029-1039

    Google Scholar 

  47. J. Villafuerte, Modern Cold Spray, Modern Cold Spray: Materials, Process, and Applications, J. Villafuerte, Ed., Springer, Cham, 2015,

    Google Scholar 

  48. M.R. Rokni, C.A. Widener, and V.R. Champagne, Microstructural Evolution of 6061 Aluminum Gas-Atomized Powder and High-Pressure Cold-Sprayed Deposition, J. Therm. Spray Technol., 2014, 23(3), p 514-524

    CAS  Google Scholar 

  49. S. Yin, X. Wang, X. Suo, H. Liao, Z. Guo, W. Li, and C. Coddet, Deposition Behavior of Thermally Softened Copper Particles in Cold Spraying, Acta Mater., 2013, 61(14), p 5105-5118

    CAS  Google Scholar 

  50. C. Borchers, F. Gärtner, T. Stoltenhoff, H. Assadi, and H. Kreye, Microstructural and Macroscopic Properties of Cold Sprayed Copper Coatings, J. Appl. Phys., 2003, 93(12), p 10064-10070

    CAS  Google Scholar 

  51. R. Jenkins, S. Yin, B. Aldwell, M. Meyer, and R. Lupoi, New Insights into the In-Process Densification Mechanism of Cold Spray Al Coatings: Low Deposition Efficiency Induced Densification, J. Mater. Sci. Technol., 2019, 35(3), p 427-431

    Google Scholar 

  52. A. Leitner, V. Maier-Kiener, and D. Kiener, Dynamic Nanoindentation Testing: Is There an Influence on a Material’s Hardness?, Mater. Res. Lett., 2017, 5(7), p 486-493

    CAS  Google Scholar 

  53. N. Hansen, Hall-Petch Relation and Boundary Strengthening, Scr. Mater., 2004, 51(8), p 801-806

    CAS  Google Scholar 

  54. Y.-K. Kim, K.-S. Kim, H.-J. Kim, C.-H. Park, and K.-A. Lee, Microstructure and Room Temperature Compressive Deformation Behavior of Cold-Sprayed High-Strength Cu Bulk Material, J. Therm. Spray Technol., 2017, 26(7), p 1498-1508

    CAS  Google Scholar 

  55. M.P. Schmitt, J.M. Schreiber, A.K. Rai, T.J. Eden, and D.E. Wolfe, Development and Optimization of Tailored Composite TBC Design Architectures for Improved Erosion Durability, J. Therm. Spray Technol., 2017, 26(6), p 1062-1075

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Christopher J. Massar of Worcester Polytechnic Institute for his insightful comments and feedback on an earlier draft of the paper. This research was funded by U.S. Army Research Laboratory, Grant Number W911NF-10-2-0098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Schreiber.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundberg, K., Sousa, B.C., Schreiber, J. et al. Finite Element Modeling of Single-Particle Impacts for the Optimization of Antimicrobial Copper Cold Spray Coatings. J Therm Spray Tech 29, 1847–1862 (2020). https://doi.org/10.1007/s11666-020-01093-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01093-8

Keywords

Navigation