Skip to main content
Log in

Prediction of Soil Depth in Karnataka Using Digital Soil Mapping Approach

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Spatial information of soil depth in regional and national level is essential for arriving crop suitability decisions. In the present study, high-resolution (250 m) soil depth map of Karnataka is prepared using digital soil mapping approach. A total of 5174 Soil legacy datasets studied by NBSS&LUP over a period of 30 years is collected and organized for mapping. Quantile regression forest (QRF) and regression kriging (RK) algorithm is tested to predict the soil depth in Karnataka. Topographic attributes derived from digital elevation model, normalized difference vegetation index, landsat-8 data and climatic variables are used as covariates. For model calibration, 80% of soil depth data is used and 20% of data is used for validation. The classical uncertainty estimates such as coefficient of determination (R2) and root mean square error (RMSE) and bias were calculated for the validation datasets in order to assess the model performance. RK model explained maximum variability for prediction of soil depth (R2 = 30%, RMSE = 34 cm) compared to QRF (R2 = 17%, RMSE = 37 cm). Lithology and elevation are found to be most important variables for prediction of soil depth in Karnataka. The predicted soil depth in Karnataka is ranged from 22 to 173 cm, and the present high-resolution (250 m) soil depth maps are useful in different hydrological, crop modelling and climate change studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arrouays, D., Grundy, M. G., Hartemink, A. E., Hempel, J. W., Heuvelink, G. B., Hong, S. Y., Lagacherie, P., Lelyk, G., McBratney, A. B., McKenzie, N. J., dL Mendonca-Santos, M., Minasny, B., Montanarella, L., Odeh, I. O., Sanchez, P. A., Thompson, J. A., Zhang, G. –L. (2014). Chapter THREE—GlobalSoilMap: Toward a fine-resolution global grid of soil properties. In Advances in agronomy (pp. 93–1340.

  • Breiman, L. (2001). Random forests. Machine Learn. https://doi.org/10.1023/A:1010933404324.

    Article  Google Scholar 

  • Catani, F., Segoni, S., & Falorni, G. (2010). An empirical geomorphology-based approach to the spatial prediction of soil thickness at catchment scale. Water Resources Research, 46(5), W05508.

    Article  Google Scholar 

  • D’Odorico, P. (2000). A possible bistable evolution of soil thickness. Journal of Geophysical Research, 105(B11), 25927–25935.

    Article  Google Scholar 

  • Dharumarajan, S., Hegde, R., Janani, N., & Singh, S. K. (2019). The need for digital soil mapping in India. Geoderma Regional. https://doi.org/10.1016/j.geodrs.2019.e00204.

    Article  Google Scholar 

  • Dharumarajan, S., Hegde, R., & Singh, S. K. (2017). Spatial prediction of major soil properties using random forest techniques—A case study in semi-arid tropics of South India. Geoderma Regional, 10C, 154–162. https://doi.org/10.1016/j.geodrs.2017.07.005.

    Article  Google Scholar 

  • Dharumarajan, S., Kalaiselvi, B., Suputhra, A., Lalitha, M., Hegde, R., Singh, S. K., et al. (2020). Digital soil mapping of key GlobalSoilMap properties in northern Karnataka plateau. Geoderma Regional. https://doi.org/10.1016/j.geodrs.2019.e00250.

    Article  Google Scholar 

  • Han, X., Liu, J., Mitra, S., Li, X., Srivastava, P., Guzman, S. M., et al. (2018). Selection of optimal scales for soil depth prediction on headwater hillslopes: A modeling approach. CATENA, 163, 257–275. https://doi.org/10.1016/j.catena.2017.12.026.

    Article  Google Scholar 

  • Hinge, G., Surampalli, R. Y., & Goyal, M. K. (2018). Prediction of soil organic carbon stock using digital mapping approach in humid India. Environmental Earth Sciences, 77, 172.

    Article  Google Scholar 

  • Kuriakose, S. L., Devkota, S., Rossiter, D. G., & Jetten, V. G. (2009). Prediction of soil depth using environmental variables in an anthropogenic landscape, a case study in the Western Ghats of Kerala, India. CATENA, 79, 27–38.

    Article  Google Scholar 

  • Lacoste, M., Minasny, B., McBratney, A. B., Michot, D., Viaud, V., et al. (2014). High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape. Geoderma, 213, 296–311.

    Article  Google Scholar 

  • Lagacherie, P. (2008). Digital soil mapping: A state of the art. In A. E. Hartemink, A. McBratney, & M. Mendonça-Santos (Eds.), Digital soil mapping with limited data. Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-8592-5_1.

    Chapter  Google Scholar 

  • Li, A. D., Tan, X., Wu, W., Liu, H. B., & Zhu, J. (2017). Predicting active layer soil thickness using topographic variables at a small watershed scale. PLoS ONE, 12, e0183742.

    Article  Google Scholar 

  • Liaw, A., & Wiener, M. (2002). Classification and regression by random forest. R News, 2, 18–21.

    Google Scholar 

  • Lu, Y.-y., Liu, F., Zhao, Y.-g., Song, X.-d., & Zhang, G.-l. (2019). An integrated method of selecting environmental covariates for predictive soil depth mapping. Journal of Integrative Agriculture, 18, 301–315. https://doi.org/10.1016/S2095-3119(18)61936-7.

    Article  Google Scholar 

  • McBratney, A. B., Mendonça-Santos, M. L., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117, 3–52. https://doi.org/10.1016/S0016-7061(03)00223-4.

    Article  Google Scholar 

  • Meinshausen, N. (2006). Quantile regression forests. Journal of Machine Learning Research, 7, 983–999.

    Google Scholar 

  • Minasny, B., & McBratney, A. B. (1999). A rudimentary mechanistic model for soil production and landscape development. Geoderma, 90, 3–21.

    Article  Google Scholar 

  • Odeh, I. O. A., McBratney, A. B., & Chittleborough, D. J. (1995). Further results on prediction of soil properties from terrain attributes: Heterotopic cokriging and regression kriging. Geoderma, 67(3–4), 215–226.

    Article  Google Scholar 

  • Penížek, V., & Borůvka, L. (2006). Soil depth prediction supported by primary terrain attributes: A comparison of methods. Plant, Soil and Environment, 52(9), 424–430.

    Article  Google Scholar 

  • Reddy, N. N., Chakraborty, P., Roy, S., Singh, K., Minasny, B., McBratney, A. B., et al. (2021). Legacy data-based national-scale digital mapping of key soil properties in India. Geoderma. https://doi.org/10.1016/j.geoderma.2020.114684.

    Article  Google Scholar 

  • Saulnier, G.-M., Beven, K., & Obled, C. (1997). Including spatially variable effective soil depths in TOPMODEL. Journal of Hydrology, 202(1–4), 158–172.

    Article  Google Scholar 

  • Shivaprasad, C. R., Reddy, R. S., Sehgal, J., Velayutham. M. (1998). Soils of Karnataka for optimizing land use. NBSS&LUP publication No.47b, Nagpur.

  • Sreenivas, K., Dadhwal, V. K., Kumar, S., Harsha, G. S., Mitran, T., Sujatha, G., et al. (2016). Digital mapping of soil organic and inorganic carbon status in India. Geoderma, 269, 160–173. https://doi.org/10.1016/j.geoderma.2016.02.002.

    Article  Google Scholar 

  • Tesfa, T. K., Tarboton, D. G., Chandler, D. G., & McNamara, J. P. (2009). Modeling soil depth from topographic and land cover attributes. Water Resources Research, 45, W10438. https://doi.org/10.1029/2008WR007474.

    Article  Google Scholar 

  • Tsai, C. C., Chen, Z. S., Duh, C. T., & Horng, F. W. (2001). Prediction of soil depth using a soillandscape regression model: a case study on forest soils in southern Taiwan. National Science Council of the Republic of China, Part B: Life Sciences, 25(1), 34–39.

    Google Scholar 

  • Vaysse, K., & Lagacherie, P. (2017). Using quantile regression forest to estimate uncertainty of digital soil mapping products. Geoderma, 291, 55–64. https://doi.org/10.1016/j.geoderma.2016.12.017.

    Article  Google Scholar 

  • Zahedi, S., Shahedi, K., Rawshan, M. H., Solimani, K., & Dadkhah, K. (2017). Soil depth modelling using terrain analysis and satellite imagery: the case study of Qeshlaq mountainous watershed (Kurdistan, Iran). Journal of Agricultural Engineering, 48, 167–174.

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of IndianSoilGrid project supported by ICAR-National Bureau of Soil Survey and Land Use Planning. The authors thanks scientists and technical officers of ICAR-NBSS& LUP who have worked in SRM project of Karnataka, Sujala III project and institute projects. The authors also thanks Mrs. Sujatha, Technical officer for her help in developing database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dharumarajan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dharumarajan, S., Vasundhara, R., Suputhra, A. et al. Prediction of Soil Depth in Karnataka Using Digital Soil Mapping Approach. J Indian Soc Remote Sens 48, 1593–1600 (2020). https://doi.org/10.1007/s12524-020-01184-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-020-01184-7

Keywords

Navigation