Skip to main content
Log in

A Novel Arbitrary Lagrangian–Eulerian Finite Element Method for a Mixed Parabolic Problem in a Moving Domain

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a novel arbitrary Lagrangian–Eulerian (ALE) mapping, thus a novel ALE-mixed finite element method (FEM), is developed and analyzed for a type of mixed parabolic equations in a moving domain. By means of a specific stabilization technique, the mixed finite element of a stable Stokes-pair is utilized to discretize this problem on the ALE description, and, stability and a nearly optimal convergence results are obtained for both semi- and fully discrete ALE finite element approximations. Numerical experiments are carried out to validate all theoretical results. The developed novel ALE–FEM can be also similarly extended to a transient porous (Darcy’s) fluid flow problem in a moving domain as well as to Stokes/Darcy- or Stokes/Biot moving interface problem in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Alvarez-Vázquez, L.J., Fernández, F.J., López, I., Martínez, A.: An arbitrary Lagrangian-Eulerian formulation for a 3D eutrophication model in a moving domain. J. Math. Anal. Appl. 366(1), 319–334 (2010)

    Article  MathSciNet  Google Scholar 

  2. Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo 21, 337–344 (1984)

    Article  MathSciNet  Google Scholar 

  3. Boffi, D., Brezzi, F., Fortin, M., et al.: Mixed Finite Element Methods and Applications, vol. 44. Springer, Berlin (2013)

    Book  Google Scholar 

  4. Boffi, D., Gastaldi, L.: Stability and geometric conservation laws for ALE formulations. Comput. Methods Appl. Mech. Eng. 193(42–44), 4717–4739 (2004)

    Article  MathSciNet  Google Scholar 

  5. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2010)

    Book  Google Scholar 

  6. Brezzi, F., Fortin, M., Donatella Marini, L.: Mixed finite element methods with continuous stresses. Math. Models Methods Appl. Sci. 3(02), 275–287 (1993)

    Article  MathSciNet  Google Scholar 

  7. Cioncolini, A., Boffi, D.: The MINI mixed finite element for the Stokes problem: an experimental investigation. Comput. Math. Appl. 77, 2432–2446 (2019)

    Article  MathSciNet  Google Scholar 

  8. Correa, M.R., Rodriguez, J.C., Farias, A.M., Siqueira, D., Devlooe, P.R.B.: Hierarchical high order finite element spaces in \(H(\text{ div },\Omega )\times H^1(\Omega )\) for a stabilized mixed formulation of Darcy problem. Comput. Math. Appl. 80, 1117–1141 (2020)

    Article  MathSciNet  Google Scholar 

  9. Das, Malay K., Mukherjee, Partha P., Muralidhar, K.: Modeling Transport Phenomena in Porous Media with Applications. Springer, Berlin (2018)

    Book  Google Scholar 

  10. Eichel, H., Tobiska, L., Xie, H.: Supercloseness and superconvergence of stabilized low-order finite element discretizations of the Stokes problem. Math. Comput. 80, 697–722 (2011)

    Article  MathSciNet  Google Scholar 

  11. Lawrence, C.: Evans. Partial Differential Equations. American Mathematical Society, Providence (2010)

    Google Scholar 

  12. Formaggia, L., Nobile, F.: A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 7, 105–132 (1999)

    MathSciNet  MATH  Google Scholar 

  13. Gastaldi, L.: A priori error estimates for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 9, 123–156 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Gerbi, S., Said-Houari, B.: Local existence and exponential growth for a semilinear damped wave equation with dynamic boundary conditions. Adv. Differ. Equ. 13, 1051–1074 (2008)

    MathSciNet  MATH  Google Scholar 

  15. He, M., Sun, P.: Error analysis of mixed finite element method for Poisson-Nernst-Planck system. Numer. Methods Part. Differ. Equ. 33, 1924–1948 (2017)

    Article  MathSciNet  Google Scholar 

  16. He, M., Sun, P.: Mixed finite element analysis for the Poisson-Nernst-Planck/Stokes coupling. J. Comput. Appl. Math. 341, 61–79 (2018)

    Article  MathSciNet  Google Scholar 

  17. Hirth, C., Amsden, A.A., Cook, J.: An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 14(3), 227–253 (1974)

    Article  Google Scholar 

  18. Huerta, A., Liu, W.K.: Viscous flow structure interaction. J. Pressure Vessel Technol. 110(1), 15–21 (1988)

    Article  Google Scholar 

  19. Hughes, T.J., Liu, W.K., Zimmermann, T.: Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29(3), 329–349 (1981)

    Article  MathSciNet  Google Scholar 

  20. Ladyzenskaja, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and Quasi-linear Equations of Parabolic Type. Nauka, Moscow (1967)

    Google Scholar 

  21. Lan, R., Sun, P.: The arbitrary Lagrangian-Eulerian finite element method for a transient Stokes/parabolic interface problem. J. Sci. Comput. 82, 59–94 (2020)

    Article  Google Scholar 

  22. Leal, L.G.: Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  23. Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites nonlinéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  24. Martín, J.S., Smaranda, L., Takahashi, T.: Convergence of a finite element/ALE method for the Stokes equations in a domain depending on time. J. Comput. Appl. Math. 230, 521–545 (2009)

    Article  MathSciNet  Google Scholar 

  25. Nitikitpaiboon, C., Bathe, K.J.: An arbitrary Lagrangian-Eulerian velocity potential formulation for fluid-structure interaction. Comput. Struct. 47(4), 871–891 (1993)

    Article  Google Scholar 

  26. Raviart, P.A., Thomas, J.M.: A mixed finite element method for second order elliptic problems. In: Proceeding of the Symposium on the Mathematical Aspects of the Finite element method, Rome, (1975)

  27. Reynolds, O.: Papers on Mechanical and Physical Subjects: The Sub-Mechanics of the Universe, vol. 3. Cambridge University Press, Cambridge (1903)

    Google Scholar 

  28. Rognes, M.E., Kirby, R.C., Logg, A.: Efficient assembly of H(div) and H(curl) conforming finite elements. SIAM J. Sci. Comput. 31, 4130–4151 (2010)

    Article  MathSciNet  Google Scholar 

  29. Souli, M., Benson, D.J. (eds.): Arbitrary Lagrangian Eulerian and Fluid-Structure Interaction: Numerical Simulation. Wiley, Hoboken (2010)

    Google Scholar 

  30. Yang, D.: A splitting positive definite mixed element method for miscible displacement of compressible flow in porous media. Numer. Methods Part. Differ. Equ. 17, 229–249 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors were partially supported by NSF Grant DMS-1418806.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengtao Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, R., Sun, P. A Novel Arbitrary Lagrangian–Eulerian Finite Element Method for a Mixed Parabolic Problem in a Moving Domain. J Sci Comput 85, 9 (2020). https://doi.org/10.1007/s10915-020-01315-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01315-9

Keywords

Navigation