Skip to main content

Advertisement

Log in

Highly selective sulfonated poly(ether ether ketone)/polyvinylpyrrolidone hybrid membranes for vanadium redox flow batteries

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel amphoteric membrane was designed by blending polyvinylpyrrolidone (PVP) with sulfonated poly(ether ether ketone) (SPEEK) to fabricate a vanadium redox flow battery. Acid–base pairs were formed by sulfonic acid and heterocyclic nitrogen, and the dense network structures were interwoven by the hydrogen bonds between the acid–base pairs. Vanadium ions were blocked by these network structures such that their penetration was weakened. Compared with Nafion115 and SPEEK membranes, the ion selectivity of SPEEK/PVP (S/P) hybrid membranes of various proportions was improved, of which the S/P-30% membrane performed best (106.1*104 S min cm−3). At the same time, these hybrid membranes showed far superior performances than the single-component membranes in a single-cell system. Most notably, the coulombic efficiency and energy efficiency achieved by the battery with a S/P-30% hybrid membrane were 97.5% and 84.5% at 60 mA cm−2, respectively, with notable stability after 50 cycles. The corresponding open-circuit voltage of the battery was maintained above 0.8 V for more than 73 h. This acid–base hybrid membrane has reached a high level of overall performance in binary non-fluorine proton exchange membranes in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Skyllas-Kazacos M, Grossmith F (1987) Efficient vanadium redox flow cell. J Electrochem Soc 134(12):2950–2953

    CAS  Google Scholar 

  2. Soloveichik GL (2014) Electrochemistry metal-free energy storage. Nature 505(7482):163–165

    CAS  Google Scholar 

  3. Li XF, Zhang HM, Mai ZS, Zhang HZ, Vankelecom I (2011) Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ Sci 4(4):1147–1160

    CAS  Google Scholar 

  4. Schwenzer B, Zhang JL, Kim S, Li LY, Liu J, Yang ZG (2011) Membrane development for vanadium redox flow batteries. Chemsuschem 4(10):1388–1406

    CAS  Google Scholar 

  5. Chen DY, Wang SJ, Xiao M, Han DM, Meng YZ (2011) Synthesis of sulfonated poly(fluorenyl ether thioether ketone)s with bulky-block structure and its application in vanadium redox flow battery. Polymer 52(23):5312–5319

    CAS  Google Scholar 

  6. Zhao YY, Li MR, Yuan ZZ, Li XF, Zhang HM, Vankelecom IFJ (2016) Advanced charged sponge-like membrane with ultrahigh stability and selectivity for vanadium flow batteries. Adv Funct Mater 26(2):210–218

    CAS  Google Scholar 

  7. Lu WJ, Li XF, Zhang HM (2018) The next generation vanadium flow batteries with high power density - a perspective. Phys Chem Chem Phys 20(1):23–35

    CAS  Google Scholar 

  8. Jicui D, Yichao D, Peng G, Jing R, Cong Y, Huili H, Yongming Z, Xiangguo T (2018) A sandwiched bipolar membrane for all vanadium redox flow battery with high coulombic efficiency. Polymer 140:233–239

    Google Scholar 

  9. Lee Y, Kim S, Maljusch A, Conradi O, Kim HJ, Jang JH, Han J, Kim J, Henkensmeier D (2019) Polybenzimidazole membranes functionalised with 1-methyl-2-mesitylbenzimidazolium ions via a hexyl linker for use in vanadium flow batteries. Polymer 174:210–217

    CAS  Google Scholar 

  10. Hsu WY, Gierke TD (1983) Ion-transport and clustering in nafion perfluorinated membranes. J Membr Sci 13(3):307–326

    CAS  Google Scholar 

  11. Teng XG, Dai JC, Su J, Zhu YM, Liu HP, Song ZG (2013) A high performance polytetrafluoroethene/Nafion composite membrane for vanadium redox flow battery application. J Power Sources 240:131–139

    CAS  Google Scholar 

  12. Jung M, Lee W, Krishnan NN, Kim S, Gupta G, Komsiyska L, Harms C, Kwon Y, Henkensmeier D (2018) Porous-Nafion/PBI composite membranes and Nafion/PBI blend membranes for vanadium redox flow batteries. Appl Surf Sci 450:301–311

    CAS  Google Scholar 

  13. Zeng L, Zhao TS, Wei L, Zeng YK, Zhang ZH (2016) Polyvinylpyrrolidone-based semi-interpenetrating polymer networks as highly selective and chemically stable membranes for all vanadium redox flow batteries. J Power Sources 327:374–383

    CAS  Google Scholar 

  14. Wu C, Lu S, Wang H, Xu X, Peng S, Tan Q, Xiang Y (2016) A novel polysulfone-polyvinylpyrrolidone membrane with superior proton-to-vanadium ion selectivity for vanadium redox flow batteries. J Mater Chem A 4(4):1174–1179

    CAS  Google Scholar 

  15. Winardi S, Raghu SC, Oo MO, Yan QY, Wai N, Lim TM, Skyllas-Kazacos M (2014) Sulfonated poly (ether ether ketone)-based proton exchange membranes for vanadium redox battery applications. J Membr Sci 450:313–322

    CAS  Google Scholar 

  16. Li ZH, Dai WJ, Yu LH, Liu L, Xi JY, Qiu XP, Chen LQ (2014) Properties investigation of sulfonated poly(ether ether ketone)/polyacrylonitrile acid-base blend membrane for vanadium redox flow battery application. ACS Appl Mater Interfaces 6(21):18885–18893

    CAS  Google Scholar 

  17. Li AF, Wang G, Quan YZ, Wei XY, Li F, Zhang MM, Ur RI, Zhang J, Chen JW, Wang RL (2020) Sulfonated poly(ether ether ketone)/polyimide acid-base hybrid membranes for vanadium redox flow battery applications. Ionics 26(5):2467–2475

    CAS  Google Scholar 

  18. Kouidri FZ, Berenguer R, Benyoucef A, Morallon E (2019) Tailoring the properties of polyanilines/SiC nanocomposites by engineering monomer and chain substituents. J Mol Struct 1188:121–128

    CAS  Google Scholar 

  19. Ouis D, Zeggai FZ, Belmokhtar A, Benyoucef A, Meddah B, Bachari K (2020) Role of p-Benzoquinone on chemically synthesized nanocomposites by polyaniline with V2O5 nanoparticle. J Inorg Organomet Polym Mater 30:3502–3510

    Google Scholar 

  20. Jin TH, Song JF, Zhu JY, Nghiem LD, Zhao BL, Li XM, He T (2017) The role of the surfactant sodium dodecyl sulfate to dynamically reduce mass transfer resistance of SPEEK coated membrane for oil-in-water emulsion treatment. J Membr Sci 541:9–18

    CAS  Google Scholar 

  21. Ye JY, Cheng YH, Sun LD, Ding M, Wu C, Yuan D, Zhao XL, Xiang CJ, Jia CK (2019) A green SPEEK/lignin composite membrane with high ion selectivity for vanadium redox flow battery. J Membr Sci 572:110–118

    CAS  Google Scholar 

  22. Cao L, Kong L, Kong L, Zhang X, Shi H (2015) Novel sulfonated polyimide/zwitterionic polymer-functionalized graphene oxide hybrid membranes for vanadium redox flow battery. J Power Sources 299:255–264

    CAS  Google Scholar 

  23. Liu S, Wang L, Zhang B, Liu B, Wang J, Song Y (2015) Novel sulfonated polyimide/polyvinyl alcohol blend membranes for vanadium redox flow battery applications. J Mater Chem A 3(5):2072–2081

    CAS  Google Scholar 

  24. Pu Y, Zhu S, Wang PH, Zhou YQ, Yang P, Xuan SS, Zhang YP, Zhang HP (2018) Novel branched sulfonated polyimide/molybdenum disulfide nanosheets composite membrane for vanadium redox flow battery application. Appl Surf Sci 448:186–202

    CAS  Google Scholar 

  25. Yamani K, Berenguer R, Benyoucef A, Morallon E (2019) Preparation of polypyrrole (PPy)-derived polymer/ZrO2 nanocomposites: Effects of nanoparticles interface and polymer structure. J Therm Anal Calorim 135(4):2089–2100

    CAS  Google Scholar 

  26. Li J, Zhang Q, Peng SS, Zhang DS, Yan XM, Wu XM, Gong X, Wang Q, He GH (2019) Electrospinning fiberization of carbon nanotube hybrid sulfonated poly (ether ether ketone) ion conductive membranes for a vanadium redox flow battery. J Membr Sci 583:93–102

    CAS  Google Scholar 

  27. Dai W, Shen Y, Li Z, Yu L, Xi J, Qiu X (2014) SPEEK/Graphene oxide nanocomposite membranes with superior cyclability for highly efficient vanadium redox flow battery. J Mater Chem A 2(31):12423–12432

    CAS  Google Scholar 

  28. Zheng LY, Wang HX, Niu RT, Zhang YX, Shi HF (2018) Sulfonated poly(ether ether ketone)/sulfonated graphene oxide hybrid membrane for vanadium redox flow battery. Electrochim Acta 282:437–447

    CAS  Google Scholar 

  29. Li Z, Dai W, Yu L, Xi J, Qiu X, Chen L (2014) Sulfonated poly(ether ether ketone)/mesoporous silica hybrid membrane for high performance vanadium redox flow battery. J Power Sources 257:221–229

    CAS  Google Scholar 

  30. Ding Y, Wang LH, Han XT (2013) THE preparation and properties of sulfonated poly(eter ether ketone) membranes for vanadium redox flow battery applicATION. Acta Polym Sin 12:1476–1482

    Google Scholar 

  31. Ding M, Ling X, Yuan D, Cheng YH, Wu C, Chao ZS, Sun LD, Yang CW, Jia CK (2018) SPEEK membrane of ultrahigh stability enhanced by functionalized carbon nanotubes for vanadium redox flow battery. Front Chem 6:9

    Google Scholar 

  32. Ainscough TJ, Oatley-Radcliffe DL, Barron AR (2017) Parametric optimisation for the fabrication of polyetherimide-sPEEK asymmetric membranes on a non-woven support layer. Sep Purif Technol 186:78–89

    CAS  Google Scholar 

  33. Zhang HQ, Yan XM, Gao L, Hu L, Ruan XH, Zheng WJ, He GH (2019) Novel triple tertiary amine polymer-based hydrogen bond network inducing highly efficient proton-conducting channels of amphoteric membranes for high-performance vanadium redox flow battery. ACS Appl Mater Interfaces 11(5):5003–5014

    CAS  Google Scholar 

  34. Yin BB, Li ZH, Dai WJ, Wang L, Yu LH, Xi JY (2015) Highly branched sulfonated poly(fluorenyl ether ketone sulfone)s membrane for energy efficient vanadium redox flow battery. J Power Sources 285:109–118

    CAS  Google Scholar 

  35. Ling L, Xiao M, Han DM, Ren S, Wang SJ, Meng YZ (2019) Porous composite membrane of PVDF/Sulfonic silica with high ion selectivity for vanadium redox flow battery. J Membr Sci 585:230–237

    CAS  Google Scholar 

  36. Liu S, Wang L, Ding Y, Liu B, Han X, Song Y (2014) Novel sulfonated poly (ether ether keton)/polyetherimide acid-base blend membranes for vanadium redox flow battery applications. Electrochim Acta 130:90–96

    CAS  Google Scholar 

  37. Liu S, Li DA, Wang LH, Yang HJ, Han XT, Liu BQ (2017) Ethylenediarnine-functionalized graphene oxide incorporated acid-base ion exchange membranes for vanadium redox flow battery. Electrochim Acta 230:204–211

    CAS  Google Scholar 

  38. Niu RT, Kong LQ, Zheng LY, Wang HX, Shi HF (2017) Novel graphitic carbon nitride nanosheets/sulfonated poly(ether ether ketone) acid-base hybrid membrane for vanadium redox flow battery. J Membr Sci 525:220–228

    CAS  Google Scholar 

  39. Sharma C, Desai MA, Patel SR (2019) Effect of surfactants and polymers on morphology and particle size of telmisartan in ultrasound-assisted anti-solvent crystallization. Chem Pap 73(7):1685–1694

    CAS  Google Scholar 

  40. Pereira GRS, Taveira SF, Cunha M, Marreto RN (2018) The effects of fillers and binders on the accuracy of tablet subdivision. Aaps Pharmscitech 19(7):2929–2933

    CAS  Google Scholar 

  41. Zhang YJ, Lin JF, Deng JP (2017) Effects of cosolvents on helical substituted polyacetylene particles prepared through suspension polymerization. J Polym Sci Part a-Polym Chem 55(16):2670–2678

    CAS  Google Scholar 

  42. Yang NT, Tan XY, Ma ZF (2008) A phase inversion/sintering process to fabricate nickel/yttria-stabilized zirconia hollow fibers as the anode support for micro-tubular solid oxide fuel cells. J Power Sources 183(1):14–19

    CAS  Google Scholar 

  43. Wu HL, Ma CCM, Kuan HC, Wang CH, Chen CY, Chiang CL (2006) Sulfonated poly(ether ether ketone)/poly(vinylpyrrolidone) acid-base polymer blends for direct methanol fuel cell application. J Polym Sci Part B-Polym Phys 44(3):565–572

    CAS  Google Scholar 

  44. Jing MX, Li JQ, Pi ZC, Zhai HA, Chen LL, Yao SS, Xiang J, Shen XQ, Xi XM, Xiao KS (2016) Electrospinning fabrication and enhanced performance of 3D Li3V2(PO4)(3)/C fiber membrane as self-standing cathodes for li-ion battery. Electrochim Acta 212:898–904

    CAS  Google Scholar 

  45. Liu B, Huang Y, Cao HJ, Song A, Lin YH, Wang MS, Li X (2018) A high-performance and environment-friendly gel polymer electrolyte for lithium ion battery based on composited lignin membrane. J Solid State Electrochem 22(3):807–816

    CAS  Google Scholar 

  46. Li Z, Liu L, Yu L, Wang L, Xi J, Qiu X, Chen L (2014) Characterization of sulfonated poly(ether ether ketone)/poly(vinylidene fluoride-co-hexafluoropropylene) composite membrane for vanadium redox flow battery application. J Power Sources 272:427–435

    CAS  Google Scholar 

  47. Xi JY, Li ZH, Yu LH, Yin BB, Wang L, Liu L, Qiu XP, Chen LQ (2015) Effect of degree of sulfonation and casting solvent on sulfonated poly(ether ether ketone) membrane for vanadium redox flow battery. J Power Sources 285:195–204

    CAS  Google Scholar 

  48. Wang F, Wang G, Zhang JC, Li BQ, Zhang J, Deng J, Chen JW, Wang RL (2017) Novel sulfonated poly(ether ether ketone)/oxidized g-C3N4 composite membrane for vanadium redox flow battery applications. J Electroanal Chem 797:107–112

    CAS  Google Scholar 

  49. Quan YZ, Wang G, Li AF, Wei XY, Li F, Zhang J, Chen JW, Wang RL (2019) Novel sulfonated poly(ether ether ketone)/triphenylamine hybrid membrane for vanadium redox flow battery applications. Rsc Adv 9(7):3838–3846

    CAS  Google Scholar 

  50. Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185(1):29–39

    CAS  Google Scholar 

  51. Wootthikanokkhan J, Seeponkai N (2006) Methanol permeability and properties of DMFC membranes based on sulfonated PEEK/PVDF blends. J Appl Polym Sci 102(6):5941–5947

    CAS  Google Scholar 

  52. Aziz MA, Shanmugam S (2017) Ultra-high proton/vanadium selectivity of a modified sulfonated poly(arylene ether ketone) composite membrane for all vanadium redox flow batteries. J Mater Chem A 5(32):16663–16671

    CAS  Google Scholar 

  53. Agmon N (1995) The grotthuss mechanism. Chem Phys Lett 244(5–6):456–462

    CAS  Google Scholar 

  54. Raposo G, Stoorvogel W (2013) Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383

    CAS  Google Scholar 

  55. Branchi M, Gigli M, Mecheri B, Zurlo F, Licoccia S, D'Epifanio A (2018) Highly ion selective hydrocarbon-based membranes containing sulfonated hypercrosslinked polystyrene nanoparticles for vanadium redox flow batteries. J Membr Sci 563:552–560

    CAS  Google Scholar 

  56. Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104(10):4535–4585

    CAS  Google Scholar 

  57. Kreuer KD (2014) Ion conducting membranes for fuel cells and other electrochemical devices. Chem Mater 26(1):361–380

    CAS  Google Scholar 

  58. Xing PX, Robertson GP, Guiver MD, Mikhailenko SD, Wang KP, Kaliaguine S (2004) Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes. J Membr Sci 229(1–2):95–106

    CAS  Google Scholar 

  59. Sun CX, Chen J, Zhang HM, Han X, Luo QT (2010) Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery. J Power Sources 195(3):890–897

    CAS  Google Scholar 

  60. Shukla G, Shahi VK (2019) Amine functionalized graphene oxide containing C16 chain grafted with poly(ether sulfone) by DABCO coupling: anion exchange membrane for vanadium redox flow battery. J Membr Sci 575:109–117

    CAS  Google Scholar 

  61. Yuan ZZ, Li XF, Hu JB, Xu WX, Cao JY, Zhang HM (2014) Degradation mechanism of sulfonated poly(ether ether ketone) (SPEEK) ion exchange membranes under vanadium flow battery medium. Phys Chem Chem Phys 16(37):19841–19847

    CAS  Google Scholar 

  62. Wang JT, Bai HJ, Zhang HQ, Zhao LP, Chen HL, Li YF (2015) Anhydrous proton exchange membrane of sulfonated poly(ether ether ketone) enabled by polydopamine-modified silica nanoparticles. Electrochim Acta 152:443–455

    CAS  Google Scholar 

  63. Sun C, Negro E, Vezzu K, Pagot G, Cavinato G, Nale A, Bang YH, Di Noto V (2019) Hybrid inorganic-organic proton-conducting membranes based on SPEEK doped with WO3 nanoparticles for application in vanadium redox flow batteries. Electrochim Acta 309:311–325

    CAS  Google Scholar 

  64. Ji Y, Tay ZY, Li SFY (2017) Highly selective sulfonated poly(ether ether ketone)/titanium oxide composite membranes for vanadium redox flow batteries. J Membr Sci 539:197–205

    CAS  Google Scholar 

  65. Yan X, Zhang C, Dai Y, Zheng W, Ruan X, He G (2017) A novel imidazolium-based amphoteric membrane for high-performance vanadium redox flow battery. J Membr Sci 544:98–107

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2018YFB1502703), the National Natural Science Foundation of China (No. 51602209), the Provincial Nature Science Foundation of Sichuan (No. 2018FZ0105), the Fundamental Research Funds for the Central Universities (Nos. YJ201746, 2018SCUH0025) and the Technological Innovation Research and Development Project of Chengdu (2018-YF05-01409-GX).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Wang or Ruilin Wang.

Ethics declarations

Conflict of interest

I declare that they have no conflict of interest.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A., Wang, G., Wei, X. et al. Highly selective sulfonated poly(ether ether ketone)/polyvinylpyrrolidone hybrid membranes for vanadium redox flow batteries. J Mater Sci 55, 16822–16835 (2020). https://doi.org/10.1007/s10853-020-05228-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05228-8

Navigation