Skip to main content
Log in

Influence of hydrophilic/hydrophobic protic ionic liquids (PILs) on the poly(vinylidene fluoride) (PVDF-ionic liquid) membrane properties

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, we investigate the effect of protic ionic liquids (PILs) on the properties of poly(vinylidene fluoride)/protic ionic liquids (PVDF/PIL) composite membranes made by solvent casting. The morphology, polymer phase, crystallinity, proton conductivities and mechanical properties were determined according to the nature and quantities of PIL added. Independently of the ionic liquids nature among EtPy][HSO4], [Py][HSO4], [(Octyl)3NH][HSO4] and [(Octyl)3NH][H2PO4], we observed the crystallization of PVDF into more stable electroactive phases (β and γ). Furthermore, the presence of PIL decreased the elastic modulus and modified the crystallization kinetics, as indicated by the size of the spherulitic microstructures. Proton conductivity results suggest the predominance of the Grotthuss-type conduction mechanism for all PVDF/PIL composites membranes supplied by the amphoteric anions, HSO4 and H2PO4. Finally, the higher stable conductivities observed for hydrated membranes with [(Octyl)3NH][HSO4] evidenced that the Grotthuss mechanism is favored by amphiphilic cation associated with the stronger hydrogen-bonded network of the [HSO4] anion.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Figure 1
Figure 2
Scheme 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Scheme 3

Similar content being viewed by others

References

  1. Ehteshami SMM, Chan SH (2014) The role of hydrogen and fuel cells to store renewable energy in the future energy network—potentials and challenges. Energy Policy 73:103–109. https://doi.org/10.1016/j.enpol.2014.04.046

    Article  CAS  Google Scholar 

  2. Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrog Energy 35(17):9349–9384. https://doi.org/10.1016/j.ijhydene.2010.05.017

    Article  CAS  Google Scholar 

  3. Bakangura E, Wu L, Ge L, Yang Z, Xu T (2016) Mixed matrix proton exchange membranes for fuel cells: state of the art and perspectives. Prog Polym Sci 57:103–152. https://doi.org/10.1016/j.progpolymsci.2015.11.004

    Article  CAS  Google Scholar 

  4. Liu L, Chen W, Li Y (2016) An overview of the proton conductivity of Nafion membranes through a statistical analysis. J Membr Sci 504:1–9. https://doi.org/10.1016/j.memsci.2015.12.065

    Article  CAS  Google Scholar 

  5. Bose S, Kuila T, Nguyen TXH, Kim NH, Lau K-t, Lee JH (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog Polym Sci 36(6):813–843. https://doi.org/10.1016/j.progpolymsci.2011.01.003

    Article  CAS  Google Scholar 

  6. Fontananova E, Brunetti A, Trotta F, Biasizzo M, Drioli E, Barbieri G (2013) Stabilization of sulfonated aromatic polymer (SAP) membranes based on SPEEK-WC for PEMFCs. Fuel Cells 13(1):86–97. https://doi.org/10.1002/fuce.201200123

    Article  CAS  Google Scholar 

  7. Kerres JA (2001) Development of ionomer membranes for fuel cells. J Membr Sci 185(1):3–27. https://doi.org/10.1016/S0376-7388(00)00631-1

    Article  CAS  Google Scholar 

  8. Escorihuela J, García-Bernabé A, Montero Á, Sahuquillo Ó, Giménez E, Compañ V (2019) Ionic liquid composite polybenzimidazol membranes for high temperature PEMFC applications. Polymers 11(4):732

    Article  CAS  Google Scholar 

  9. da Trindade LG, Zanchet L, Martins PC, Borba KMN, Santos RDM, Paiva RdS, Vermeersch LAF, Ticianelli EA, de Souza MO, Martini EMA (2019) The influence of ionic liquids cation on the properties of sulfonated poly (ether ether ketone)/polybenzimidazole blends applied in PEMFC. Polymer 179:121723. https://doi.org/10.1016/j.polymer.2019.121723

    Article  CAS  Google Scholar 

  10. Zhang Y, Zhang H, Zhu X, Gang L, Bi C, Liang Y (2007) Fabrication and characterization of a PTFE-reinforced integral composite membrane for self-humidifying PEMFC. J Power Sources 165(2):786–792. https://doi.org/10.1016/j.jpowsour.2006.12.060

    Article  CAS  Google Scholar 

  11. Su H, Pasupathi S, Bladergroen BJ, Linkov V, Pollet BG (2013) Enhanced performance of polybenzimidazole-based high temperature proton exchange membrane fuel cell with gas diffusion electrodes prepared by automatic catalyst spraying under irradiation technique. J Power Sources 242:510–519. https://doi.org/10.1016/j.jpowsour.2013.05.128

    Article  CAS  Google Scholar 

  12. Tang H, Geng K, Hu Y, Li N (2020) Synthesis and properties of phosphonated polysulfones for durable high-temperature proton exchange membranes fuel cell. J Membr Sci 605:118107. https://doi.org/10.1016/j.memsci.2020.118107

    Article  CAS  Google Scholar 

  13. Goldbach JT, Amin-Sanayei R, He W, Henry J, Kosar W, Lefebvre A, O’Brien G, Vaessen D, Wood K, Zerafati S (2017) Chapter 6 commercial synthesis and applications of poly(vinylidene fluoride). In: Fluorinated polymers: volume 2: applications, vol 2. The Royal Society of Chemistry, pp 127–157. https://doi.org/10.1039/9781782629368-00127

  14. Bakeri G, Ismail AF, Matsuura T, Abdullah MS, Ng BC, Mashkour M (2015) Effect of PVDF blending on the structure and performance of PEI hollow fiber membrane in CO2 separation process. Chem Eng Res Des 104:367–375. https://doi.org/10.1016/j.cherd.2015.08.024

    Article  CAS  Google Scholar 

  15. Liu F, Hashim NA, Liu Y, Abed MRM, Li K (2011) Progress in the production and modification of PVDF membranes. J Membr Sci 375(1):1–27. https://doi.org/10.1016/j.memsci.2011.03.014

    Article  CAS  Google Scholar 

  16. Marr PC, Marr AC (2016) Ionic liquid gel materials: applications in green and sustainable chemistry. Green Chem 18(1):105–128. https://doi.org/10.1039/C5GC02277K

    Article  Google Scholar 

  17. Che Q, Fan H, Duan X, Feng F, Mao W, Han X (2018) Layer by layer self-assembly fabrication of high temperature proton exchange membrane based on ionic liquids and polymers. J Mol Liq 269:666–674. https://doi.org/10.1016/j.molliq.2018.08.030

    Article  CAS  Google Scholar 

  18. Sainz De Aja AO, Vejo MD, Uribe IO (2016) Proton exchange membranes based on polymeric ionic liquids for fuel cell applications. ECS Trans 75(14):589–596. https://doi.org/10.1149/07514.0589ecst

    Article  CAS  Google Scholar 

  19. Ortiz-Martínez VM, Ortiz A, Fernández-Stefanuto V, Tojo E, Colpaert M, Améduri B, Ortiz I (2019) Fuel cell electrolyte membranes based on copolymers of protic ionic liquid [HSO3-BVIm][TfO] with MMA and hPFSVE. Polymer 179:121583. https://doi.org/10.1016/j.polymer.2019.121583

    Article  CAS  Google Scholar 

  20. Wang M, Zhang H, Thirunavukkarasu G, Salam I, Varcoe JR, Mardle P, Li X, Mu S, Du S (2019) Ionic liquid-modified microporous ZnCoNC-based electrocatalysts for polymer electrolyte fuel cells. ACS Energy Lett 4(9):2104–2110. https://doi.org/10.1021/acsenergylett.9b01407

    Article  CAS  Google Scholar 

  21. Thanganathan U, Nogami M (2015) Investigations on effects of the incorporation of various ionic liquids on PVA based hybrid membranes for proton exchange membrane fuel cells. Int J Hydrog Energy 40(4):1935–1944. https://doi.org/10.1016/j.ijhydene.2014.11.099

    Article  CAS  Google Scholar 

  22. Leones R, Costa CM, Machado AV, Esperança JMSS, Silva MM, Lanceros-Méndez S (2015) Effect of ionic liquid anion type in the performance of solid polymer electrolytes based on poly(vinylidene fluoride-trifluoroethylene). Electroanalysis 27(2):457–464. https://doi.org/10.1002/elan.201400530

    Article  CAS  Google Scholar 

  23. Livi S, Duchet-Rumeau J, Gérard J-F, Pham TN (2015) Polymers and ionic liquids: a successful wedding. Macromol Chem Phys 216(4):359–368. https://doi.org/10.1002/macp.201400425

    Article  CAS  Google Scholar 

  24. Xing C, Zhao M, Zhao L, You J, Cao X, Li Y (2013) Ionic liquid modified poly(vinylidene fluoride): crystalline structures, miscibility, and physical properties. Polym Chem 4(24):5726–5734. https://doi.org/10.1039/C3PY00466J

    Article  CAS  Google Scholar 

  25. Livi S, Duchet-Rumeau J, Gérard J-F (2011) Tailoring of interfacial properties by ionic liquids in a fluorinated matrix based nanocomposites. Eur Polym J 47(7):1361–1369. https://doi.org/10.1016/j.eurpolymj.2011.03.011

    Article  CAS  Google Scholar 

  26. Anouti M, Caillon-Caravanier M, Dridi Y, Galiano H, Lemordant D (2008) Synthesis and characterization of new pyrrolidinium based protic ionic liquids. Good and superionic liquids. J Phys Chem B 112(42):13335–13343. https://doi.org/10.1021/jp805992b

    Article  CAS  Google Scholar 

  27. Canongia Lopes JN, Esperança JMSS, de Ferro AM, Pereiro AB, Plechkova NV, Rebelo LPN, Seddon KR, Vázquez-Fernández I (2016) Protonic ammonium nitrate ionic liquids and their mixtures: insights into their thermophysical behavior. J Phys Chem B 120(9):2397–2406. https://doi.org/10.1021/acs.jpcb.5b11900

    Article  CAS  Google Scholar 

  28. Vázquez-Fernández I, Raghibi M, Bouzina A, Timperman L, Bigarré J, Anouti M (2020) Protic Ionic liquids/poly(vinylidene fluoride) composite membranes for fuel cell application. J Energy Chem. https://doi.org/10.1016/j.jechem.2020.04.022

    Article  Google Scholar 

  29. García-Garabal S, Vila J, Rilo E, Domínguez-Pérez M, Segade L, Tojo E, Verdía P, Varela LM, Cabeza O (2017) Transport properties for 1-Ethyl-3-methylimidazolium n-Alkyl sulphates: possible evidence of Grotthuss mechanism. Electrochim Acta 231:94–102. https://doi.org/10.1016/j.electacta.2017.01.197

    Article  CAS  Google Scholar 

  30. Anouti M, Jones J, Boisset A, Jacquemin J, Caillon-Caravanier M, Lemordant D (2009) Aggregation behavior in water of new imidazolium and pyrrolidinium alkycarboxylates protic ionic liquids. J Colloid Interface Sci 340(1):104–111. https://doi.org/10.1016/j.jcis.2009.07.061

    Article  CAS  Google Scholar 

  31. Anouti M, Mirghani A, Jacquemin J, Timperman L, Galiano H (2013) Tunable gold nanoparticles shape and size in reductive and structuring media containing protic ionic liquids. Ionics 19(12):1783–1790. https://doi.org/10.1007/s11581-013-0915-0

    Article  CAS  Google Scholar 

  32. Anouti M, Jacquemin J (2014) Structuring reductive media containing protic ionic liquids and their application to the formation of metallic nanoparticles. Colloids Surf A 445:1–11. https://doi.org/10.1016/j.colsurfa.2013.12.064

    Article  CAS  Google Scholar 

  33. Bottino A, Capannelli G, Munari S, Turturro A (1988) Solubility parameters of poly(vinylidene fluoride). J Polym Sci Part B Polym Phys 26(4):785–794. https://doi.org/10.1002/polb.1988.090260405

    Article  CAS  Google Scholar 

  34. Lee TH, Boey FYC, Khor KA (1995) On the determination of polymer crystallinity for a thermoplastic PPS composite by thermal analysis. Compos Sci Technol 53(3):259–274. https://doi.org/10.1016/0266-3538(94)00070-0

    Article  CAS  Google Scholar 

  35. Nair MG, Mohapatra SR, Garda M-R, Patanair B, Saiter-Fourcin A, Thomas S (2020) Role of protic ionic liquid concentration in proton conducting polymer electrolytes for improved electrical and thermal properties. Mater Res Express 7(6):064005. https://doi.org/10.1088/2053-1591/ab9665

    Article  Google Scholar 

  36. Greaves TL, Drummond CJ (2008) Protic ionic liquids: properties and applications. Chem Rev 108(1):206–237. https://doi.org/10.1021/cr068040u

    Article  CAS  Google Scholar 

  37. Liu S, Zhou L, Wang P, Zhang F, Yu S, Shao Z, Yi B (2014) Ionic-liquid-based proton conducting membranes for anhydrous H2/Cl2 Fuel-cell applications. ACS Appl Mater Interfaces 6(5):3195–3200. https://doi.org/10.1021/am404645c

    Article  CAS  Google Scholar 

  38. Debenedetti PG (2003) Supercooled and glassy water. J Phys Condens Matter 15(45):R1669–R1726. https://doi.org/10.1088/0953-8984/15/45/r01

    Article  CAS  Google Scholar 

  39. Mejri R, Dias JC, Lopes AC, Bebes Hentati S, Silva MM, Botelho G, Mão de Ferro A, Esperança JMSS, Maceiras A, Laza JM, Vilas JL, León LM, Lanceros-Mendez S (2015) Effect of ionic liquid anion and cation on the physico-chemical properties of poly(vinylidene fluoride)/ionic liquid blends. Eur Polym J 71:304–313. https://doi.org/10.1016/j.eurpolymj.2015.07.058

    Article  CAS  Google Scholar 

  40. Chen G-X, Zhang S, Zhou Z, Li Q (2015) Dielectric properties of poly(vinylidene fluoride) composites based on Bucky gels of carbon nanotubes with ionic liquids. Polym Compos 36(1):94–101. https://doi.org/10.1002/pc.22917

    Article  CAS  Google Scholar 

  41. Guo D, Han Y, Huang J, Meng E, Ma L, Zhang H, Ding Y (2019) Hydrophilic poly(vinylidene fluoride) film with enhanced inner channels for both water- and ionic liquid-driven ion-exchange polymer metal composite actuators. ACS Appl Mater Interfaces 11(2):2386–2397. https://doi.org/10.1021/acsami.8b18098

    Article  CAS  Google Scholar 

  42. Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39(4):683–706. https://doi.org/10.1016/j.progpolymsci.2013.07.006

    Article  CAS  Google Scholar 

  43. Nishi T, Wang TT (1975) Melting point depression and kinetic effects of cooling on crystallization in poly(vinylidene fluoride)-poly(methyl methacrylate) mixtures. Macromolecules 8(6):909–915. https://doi.org/10.1021/ma60048a040

    Article  CAS  Google Scholar 

  44. Correia DM, Sabater i Serra R, Gómez Tejedor JA, de Zea Bermudez V, Andrio Balado A, Meseguer-Dueñas JM, Gomez Ribelles JL, Lanceros-Méndez S, Costa CM (2018) Ionic and conformational mobility in poly(vinylidene fluoride)/ionic liquid blends: dielectric and electrical conductivity behavior. Polymer 143:164–172. https://doi.org/10.1016/j.polymer.2018.04.019

    Article  CAS  Google Scholar 

  45. Chaves Lins L, Livi S, Maréchal M, Duchet-Rumeau J, Gérard J-F (2018) Structural dependence of cations and anions to building the polar phase of PVDF. Eur Polym J 107:236–248. https://doi.org/10.1016/j.eurpolymj.2018.08.022

    Article  CAS  Google Scholar 

  46. Al-Zohbi F, Jacquemin J, Ghamouss F, Schmaltz B, Abarbri M, Cherry K, Tabcheh MF, Tran-Van F (2019) Impact of the aqueous pyrrolidinium hydrogen sulfate electrolyte formulation on transport properties and electrochemical performances for polyaniline-based supercapacitor. J Power Sources 431:162–169. https://doi.org/10.1016/j.jpowsour.2019.05.018

    Article  CAS  Google Scholar 

  47. Esmaeili N, Gray EM, Webb CJ (2019) Non-fluorinated polymer composite proton exchange membranes for fuel cell applications—a review. ChemPhysChem 20(16):2016–2053. https://doi.org/10.1002/cphc.201900191

    Article  CAS  Google Scholar 

  48. Anouti M, Jacquemin J, Porion P (2012) Transport properties investigation of aqueous protic ionic liquid solutions through conductivity, viscosity, and NMR self-diffusion measurements. J Phys Chem B 116(14):4228–4238. https://doi.org/10.1021/jp3010844

    Article  CAS  Google Scholar 

  49. Anouti M, Porion P, Brigouleix C, Galiano H, Lemordant D (2010) Transport properties in two pyrrolidinium-based protic ionic liquids as determined by conductivity, viscosity and NMR self-diffusion measurements. Fluid Phase Equilib 299(2):229–237. https://doi.org/10.1016/j.fluid.2010.09.035

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank “La region Centre Val de Loire” for financial support to the researchers involved in this study under the Lavoisier regional program. We would also like to thank CERMEL for DMA characterization of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mérièm Anouti.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vázquez-Fernández, I., Bouzina, A., Raghibi, M. et al. Influence of hydrophilic/hydrophobic protic ionic liquids (PILs) on the poly(vinylidene fluoride) (PVDF-ionic liquid) membrane properties. J Mater Sci 55, 16697–16717 (2020). https://doi.org/10.1007/s10853-020-05207-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05207-z

Navigation