Skip to main content
Log in

Phase Stability of Ni/Ni3Al Multilayers Under Thermal Annealing and Irradiation

  • Nanostructured Materials under Extreme Environments
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Nickel-based superalloys with L12-ordered Ni3Al precipitates exhibit excellent high-temperature mechanical properties and corrosion resistance. Here we studied the phase stability of a Ni/Ni3Al multilayer under high-temperature thermal annealing and Ni ion irradiation. Ni/Ni3Al multilayers with order–disorder interfaces were fabricated by magnetron sputtering at 773 K. Thermally induced interdiffusion and precipitation occurred under thermal annealing at 1073 K for 1 h. Ni ion irradiation at 773 K to a dose of 2 × 1016/cm2 led to chemical intermixing across the Ni/Ni3Al interface, although the Ni3Al layer remained ordered. The results of this study provide insight into the understanding of disorder, recovery, and dissolution processes occurring in ordered intermetallic compounds in extreme environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Mori, H. Miura, S. Yamazaki, T. Suzuki, Y. Seki, T. Kunugi, S. Nishio, N. Fujisawa, A. Hishinuma, and M. Kikuchi, Fusion Technol. 21, 1744 (1992).

    Article  Google Scholar 

  2. K. Nakata, K. Fukai, A. Hishinuma, K. Ameyama, and M. Tokiazane, J. Nucl. Mater. 202, 39 (1993).

    Article  Google Scholar 

  3. W.J.S. Yang, J. Nucl. Mater. 108–109, 339 (1982).

    Article  Google Scholar 

  4. Q. Gao, R.Y. Liu, J.S. Zhang, and J.T. Guo, Mater. Lett. 59, 2052 (2005).

    Article  Google Scholar 

  5. W. Ren and R. Swimdeman, J. Press. Vessel Technol. 131(2), 024002 (2008). https://doi.org/10.1115/1.2967885.

    Article  Google Scholar 

  6. X.H. Yu, Y. Yamabe-Mitarai, and H. Harada, Scr. Mater. 43, 671 (2000).

    Article  Google Scholar 

  7. X.K. Meng, H. Shen, H. Vehoff, S. Mathur, and A.H.W. Ngan, J. Mater. Res. 17, 790 (2002).

    Article  Google Scholar 

  8. X. Yang, X. Peng, and F. Wang, Scr. Mater. 56, 509 (2007).

    Article  Google Scholar 

  9. S.J. Zinkle and G.S. Was, Acta Mater. 61, 735 (2013).

    Article  Google Scholar 

  10. A.M. Ges, O. Fornaro, and H.A. Palacio, Mater. Sci. Eng. A 458, 96 (2007).

    Article  Google Scholar 

  11. X. Xia, Y. Peng, J. Zhang, X. He, S. Yin, J. Ding, C. Li, X. Chen, and Y. Liu, J. Mater. Sci. 54, 13368 (2019).

    Article  Google Scholar 

  12. H.M. Tawancy, Metall. Microst. Anal. 6, 200 (2017).

    Article  Google Scholar 

  13. A.J. Ardell, High Temperature Aluminides and Intermetallics, ed. S.H. Whang, D.P. Pope, and C.T. Liu (Elsevier, Amsterdam, 1992), p. 212.

    Chapter  Google Scholar 

  14. H.C. Liu and T.E. Mitchell, Acta Metall. 31, 863 (1983).

    Article  Google Scholar 

  15. B. Sencer, G. Bond, F. Garner, M. Hamilton, S. Maloy, and W. Sommer, J. Nucl. Mater. 296, 145 (2001).

    Article  Google Scholar 

  16. T.M. Angeliu, J.T. Ward, and J.K. Witter, J. Nucl. Mater. 366, 223 (2007).

    Article  Google Scholar 

  17. C. Sun, M. Kirk, M. Li, K. Hattar, Y. Wang, O. Anderoglu, J. Valdez, B.P. Uberuaga, R. Dickerson, and S.A. Maloy, Acta Mater. 95, 357 (2015).

    Article  Google Scholar 

  18. B.H. Sencer, G.M. Bond, F.A. Garner, M.L. Hamilton, B.M. Oliver, L.E. Thomas, S.A. Maloy, W.F. Sommer, M.R. James, and P.D. Ferguson, J. Nucl. Mater. 283–287, 324 (2000).

    Article  Google Scholar 

  19. M.J. Sabochick and N.Q. Lam, Phys. Rev. B 43, 5243 (1991).

    Article  Google Scholar 

  20. C. Zhang, K. Feng, Z. Li, F. Lu, J. Huang, and Y. Wu, Appl. Surf. Sci. 378, 408 (2016).

    Article  Google Scholar 

  21. R. Banerjee, G.B. Thompson, P.M. Anderson, and H.L. Fraser, Thin Solid Films 424, 93 (2003).

    Article  Google Scholar 

  22. A.L. Greer and H. Assadi, Mater. Sci. Eng. A 226–228, 133 (1997).

    Article  Google Scholar 

  23. C. Sun, E. Martínez, J.A. Aguiar, A. Caro, J.A. Valdez, K. Baldwin, Y. Xu, B.P. Uberuaga, O. Anderoglu, and S.A. Maloy, Mater. Res. Lett. 3, 169 (2015).

    Article  Google Scholar 

  24. P.Y. Li, H.M. Lu, S.C. Tang, and X.K. Meng, J. Alloys Compd. 478, 240 (2009).

    Article  Google Scholar 

  25. S.I. Porollo, A.M. Dvoriashin, Y.V. Konobeev, and F.A. Garner, J. Nucl. Mater. 442, 809 (2013).

    Article  Google Scholar 

  26. L. Chen and A. Ardell, Scr. Metall. 11, 871 (1977).

    Article  Google Scholar 

  27. M. Watanabe, Z. Horita, D.J. Smith, M.R. McCartney, T. Sano, and M. Nemoto, Acta Metall. Mater. 42, 3381 (1994).

    Article  Google Scholar 

  28. R. Pinizzotto, L. Chen, and A. Ardell, Metall. Trans. A 9, 1715 (1978).

    Article  Google Scholar 

  29. E. Camus, C. Abromeit, F. Bourdeau, N. Wanderka, and H. Wollenberger, Phys. Rev. B 54, 3142 (1996).

    Article  Google Scholar 

  30. L. Shao, C.C. Wei, J. Gigax, A. Aitkaliyeva, D. Chen, B.H. Sencer, and F.A. Garner, J. Nucl. Mater. 453, 176 (2014).

    Article  Google Scholar 

  31. J. Ewert and G. Schmitz, Eur. Phys. J. B Condens. Matter Complex Syst. 17, 391 (2000).

    Article  Google Scholar 

  32. T. Lee, A. Caro, and M.J. Demkowicz, J. Mater. Res. 30, 1456 (2015).

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge support from the US Department of Energy (DOE) through the Los Alamos National Laboratory’s Laboratory Directed Research & Development (LDRD) Program. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is managed by Triad National Security, LLC for the US Department of Energy’s NNSA, under Contract 89233218CNA000001. This work was also supported by the Idaho National Laboratory’s LDRD Program under the US DOE Idaho operations office under Contract DE-AC07-051D14517. We also acknowledge the US DOE, Office of Nuclear Energy Nuclear Science User Facility under Contract DE-AC07-051D14517 and Office of Sciences User Facility Center for Integrated Nanotechnologies at Los Alamos National Laboratory under Contract 89233218CNA000001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Maloy, S.A., Baldwin, K. et al. Phase Stability of Ni/Ni3Al Multilayers Under Thermal Annealing and Irradiation. JOM 72, 3995–4001 (2020). https://doi.org/10.1007/s11837-020-04377-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04377-0

Navigation