Skip to main content
Log in

Generalized Fractional Calculus Operators and the \(_pR_q(\lambda ,\eta ;z)\) Function

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

We derive some classical and fractional properties of \(_pR_q(\lambda ,\eta ;z)\) function using fractional calculus approach involving Hilfer fractional derivative operator. Further, we introduce an integral operator which contains \(_pR_q(\lambda ,\eta ;z)\) function as a kernel: \(\begin{aligned} \left( {\mathcal{R}}_{\lambda ,\eta ,\mathbf{u}_{\mathbf{p}},\mathbf{v}_{\mathbf{q}},\omega ;a+} f\right) (x) = \int _a^x \left( x-r\right) ^{\eta -1} {}_pR_q\!\left[ {\left. {\begin{array}{c} \mathbf{u}_{\mathbf{p}}\\ \mathbf{v}_{\mathbf{q}}\end{array}} \ \right| \lambda ,\eta ; \omega (x-r)^\lambda }\right] f(r) \ \mathrm{d}r, \;\;\; (x>a), \end{aligned}\)in space L(ab). We establish the composition of the operator \({\mathcal{R}}_{\lambda ,\eta ,\mathbf{u}_{\mathbf{p}},\mathbf{v}_{\mathbf{q}},\omega ;a+}\) with the Riemann–Liouville (R–L) fractional integral and differential operators. Some composition properties of integral operator \({\mathcal{R}}_{\lambda ,\eta ,\mathbf{u}_{\mathbf{p}},\mathbf{v}_{\mathbf{q}},\omega ;a+}\) and their inversion have also been exhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews GE, Askey R, Roy R (1999) Special functions. Encyclopedia of mathematics and its applications, vol 71. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Debnath L, Bhatta D (2014) Integral transform and their applications, 3rd edn. Chapman and Hall (CRC Press), London

    Book  Google Scholar 

  • Desai R, Shukla AK (2017) Some results on function \({}_pR_q(\alpha,\beta; z)\). J Math Anal Appl 448:187–197

    Article  MathSciNet  Google Scholar 

  • Erdélyi A, Magnus W, Oberhettinger F, Tricomi FG (1953) Higher transcendental functions, vol I. McGraw-Hill, New York

    MATH  Google Scholar 

  • Garra R, Gorenflo R, Polito F, Tomovski Ż (2014) Hilfer–Prabhakar derivatives and some applications. Appl Math Comput 242:576–589

    MathSciNet  MATH  Google Scholar 

  • Govil NK, Mohapatra R, Qazi MA, Schmeisser G (eds) (2017) Progress in approximation theory and applicable complex analysis. Springer, Berlin

    MATH  Google Scholar 

  • Gupta V, Rassias MTh (2019) Moments of linear positive operators and approximation. Springer, Berlin

    Book  Google Scholar 

  • Gupta V, Rassias MTh, Agarwal PN, Acu AM (2018) Recent advances in constructive approximation theory. Springer optimization and its applications. Springer, Berlin

    Google Scholar 

  • Gupta V, Agrawal D, Rassias MTh (2019) Quantitative estimates for differences of Baskakov-type operators. Complex Anal Oper Theory 13(8):4045–4064

    Article  MathSciNet  Google Scholar 

  • Hilfer R (2008) Threefold introduction to fractional derivatives. In: Klages R et al (eds) Anomalous transport: foundations and applications. Wiley-VCH, Weinheim

    Google Scholar 

  • Kilbas AA, Saigo M, Saxena RK (2004) Generalized Mittag–Leffler function and generalized fractional calculus operators. Integral Transforms Spec Funct 17:31–49

    Article  MathSciNet  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. North-Holland mathematical studies, vol 204. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Kumar D (2013) Solution of fractional kinetic equation by class of integral transform of pathway type. J Math Phys 54:1–13

    Article  MathSciNet  Google Scholar 

  • Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York

    MATH  Google Scholar 

  • Milovanović GV, Rassias MTh (eds) (2014) Analytic number theory, approximation theory and special functions. Springer, Berlin

    MATH  Google Scholar 

  • Prabhakar TR (1971) A singular integral equation with a generalized Mittag–Leffler function in the kernel. Yokohama Math J 19:7–15

    MathSciNet  MATH  Google Scholar 

  • Rainville ED (1960) Special functions. The Macmillan Company, New York

    MATH  Google Scholar 

  • Riesz M (1949) L’intégrale de Riemann–Liouville et le problème de Cauchy. Acta Mathematica 81(1):1–223

    Article  MathSciNet  Google Scholar 

  • Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives. Theory and applications. Gordon and Breach, Yverdon

    MATH  Google Scholar 

  • Srivastava HM, Tomovski Ż (2009) Fractional calculus with an integral operator containing a generalized Mittag–Leffler function in the kernel. Appl Math Comput 211:198–210

    MathSciNet  MATH  Google Scholar 

  • Titchmarsh EC (1937) Introduction to the theory of Fourier integrals. Chelsea Publ, New York

    MATH  Google Scholar 

  • Wiman A (1905) Über den fundamental Satz in der Theorie der Funktionen \(E_\alpha (x)\). Acta Math 29:191–201

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their valuable comments and suggestions, which led to the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Shukla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, A., Jana, R.K. & Shukla, A.K. Generalized Fractional Calculus Operators and the \(_pR_q(\lambda ,\eta ;z)\) Function. Iran J Sci Technol Trans Sci 44, 1815–1825 (2020). https://doi.org/10.1007/s40995-020-00979-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-020-00979-0

Keywords

Mathematics Subject Classification

Navigation