Skip to main content
Log in

The specific enthalpy of air as an indicator of heat stress in livestock animals

  • Review Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Along with recognition of environmental effects on the performance and welfare of livestock animals, studies have been proposing new methodologies and parameters to diagnose the heat stress of animals through the physical properties of air. This article aims to present the state-of-the-art on the use of the specific enthalpy of air as an indicator of heat stress in livestock animals. As a starting point, conceptual considerations were made about the connection between homoeothermic animals and the environment. Variables for heat stress evaluation based on psychrometric air properties are then described, including dry bulb temperature and relative humidity, which are often used microclimate variables, and the specific enthalpy of dry air, which acts as a thermal comfort index. Final considerations highlight the recent history of the use of specific enthalpy of air equations as indicators of heat stress in livestock animals, with the intention of better understanding the relationship between animals and the environment. As a conclusion, the specific enthalpy of air is recommended as an indicator in the assessment of livestock housing conditions as, unlike other indices, it is based on thermodynamic air properties and not on linear regressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abreu VMN, Abreu PG (2011) Os desafios da ambiência sobre os sistemas de aves no Brasil. Rev Bras Zootec 40:1–14

    Article  Google Scholar 

  • AHDB (2018) Calf management. https://media.ahdb.org.uk/media/Default/Imported%20Publication%20Docs/CalfManagement_180619_WEB.pdf. Accessed on: Nov 01, 2019

  • Albright LD (1990) Environment control for animals and plants. St, Joseph: American Society of Agricultural Engineers Michigan

  • Al-Hassan MJ (2018) The effects of evaporative cooling on heat stressed dairy Holstein cows under a semi-arid environment in Riyadh area, Saudi Arabia. Anim Vet Sci 6:67

    Article  Google Scholar 

  • Almeida Neto LA, Pandorfi H, Almeida GL, Guiselini C (2014) Climatização na pré-ordenha de vacas Girolando no inverno do semiárido. Rev Bras Eng Agríc Ambient-Agriambi 18:1072–1078

    Article  Google Scholar 

  • Almeida GL, Pandorfi H, Guiselini C, Henrique HM, Almeida GA (2011) Uso do sistema de resfriamento adiabático evaporativo no conforto térmico de vacas da raça girolando. Rev Bras Eng Agríc Ambient-Agriambi 15:754–760. https://doi.org/10.1590/S1415-43662011000700015

    Article  Google Scholar 

  • Andrade RR (2017) Determinação da faixa de conforto térmico para galinhas poedeiras na fase inicial de criação. Dissertation, Federal University of Viçosa

  • Andrade RR, Tinôco IDFF, Baêta FC, Albino LFT, Cecon PR (2019) Influence of different thermal environments on the performance of laying hens during the initial stage of rearing. Engenharia Agrícola 39:32–40. https://doi.org/10.1590/1809-4430-Eng.Agric.v39n1p32-40/2019

    Article  Google Scholar 

  • ASHRAE (2009) ASHRAE handbook—fundamentals

  • Azevêdo DMMR, Alves AA (2009) Bioclimatologia aplicada à produção de bovinos leiteiros nos trópicos. Embrapa Meio-Norte, Teresina

  • Azizpour F, Moghimi S, Salleh E, Mat S, Lim CH, Sopian K (2013) Thermal comfort assessment of large-scale hospitals in tropical climates: a case study of University Kebangsaan Malaysia Medical Centre (UKMMC). Energy Build 64:317–322. https://doi.org/10.1016/j.enbuild.2013.05.033

    Article  Google Scholar 

  • Baêta FC (1985) Responses of lactating dairy cows to the combined effects of temperature, humidity and wind velocity in the warm season. Thesis, University of Missouri

  • Baêta FC, Souza CF (1997) Ambiência em edificações rurais – conforto animal. UFV, Viçosa

  • Barbosa Filho JAD, Vieira FMC, Garcia DB, Silva MAN, Silva IJO (2007) Mudanças e uso das tabelas de entalpia. http://nupea.esalq.usp.br. Accessed on: Aug 08, 2019

  • Barnabé J, Pandorfi H, Almeida GL, Guiselini C, Jacob AL (2015) Conforto térmico e desempenho de bezerras Girolando alojadas em abrigos individuais com diferentes coberturas. Rev Bras Eng Agríc Ambient-Agriambi 19:481–488

    Article  Google Scholar 

  • Beltrán-Prieto JC, Beltrán-Prieto LA, Nguyen LHBS (2015) Estimation of psychrometric parameters of vapor water mixtures in air. Comput Appl Eng Educ 24:39–43. https://doi.org/10.1002/cae.21670

    Article  Google Scholar 

  • Bertocchi L, Vitali A, Lacetera N, Nardone A, Varisco G, Bernabucci U (2014) Seasonal variations in the composition of Holstein cow’s milk and temperature–humidity index relationship. Animal 8:667–674. https://doi.org/10.1017/S1751731114000032

    Article  CAS  Google Scholar 

  • Black JL, Mullan BP, Lorschy ML, Giles LR (1993) Lactation in the sow during heat stress. Livest Prod Sci 35:153–170

    Article  Google Scholar 

  • Bloemhof S, Mathur PK, Knol EF, Van Der Waaij EH (2013) Effect of daily environmental temperature on farrowing rate and total born in dam line sows. J Anim Hermor. https://doi.org/10.2527/jas.2012-5902

  • Borges PHM, Mendoza ZMDSH, Morais PHM, Santos RL (2018) Sistema Automatizado de Baixo Custo para Produtores Rurais: controle e monitoramento do ambiente térmico na suinocultura. Revista Eletrônica Competências Digitais para Agricultura Familiar 4:177–199

    Google Scholar 

  • Britto JFB (2010) Considerações sobre psicrometria. Revista SBCC 45:35–41

    Google Scholar 

  • Brossi C, Montes-Villanueva N, Rios-Mera JD, Delgado EF, Menten JM, Contreras-Castillo CJ (2018) Acute heat stress detrimental effects transpose high mortality rate and affecting broiler breast meat quality. Scientia Agropecuaria 9:305–311

    Article  Google Scholar 

  • Bueno JPR, Gotardo LRM, Santos AM et al (2020) Effect of cyclic heat stress on thyroidal hormones, thyroid histology, and performance of two broiler strains. Int J Biometeorol:1–8. https://doi.org/10.1007/s00484-020-01886-0

  • Buffington DE, Collasso-Arocho A, Canton GH (1981) Black globe-humidity index (ITGU) as confort equation for dairy cows. Trans ASAE 24:711–714

    Article  Google Scholar 

  • Camargo JR, Silva IJO, Nazareno AC, Vieira F, Castro AC, Dias RA (2015) Qualidade de pintos em função do microclima, tempo de espera e idade de matrizes. Rev Bras Eng Agríc Ambient 19:1079–1085

    Article  Google Scholar 

  • Camelo LCL, Lana GRQ, Santos MJB, Camelo YARP, Marinho AL, Rabello CBV (2015) Inclusão de farelo de goiaba na dieta de codornas europeias. Ciência Anim Bras 16:343–349

    Article  Google Scholar 

  • Cândido MGL, Tinoco IFF, Pinto FAC, Santos NT, Roberti RP (2016) Determination of thermal comfort zone for early-stage broilers. Eng Agríc 36:760–767

    Article  Google Scholar 

  • Cassuce DC (2011) Determinação das faixas de conforto térmico para frangos de corte de diferentes idades criados no Brasil. Thesis, Federal University of Viçosa

  • Cassuce DC, Tinôco IDFF, Baêta FC, Zolnier S, Cecon PR, Vieira MDFA (2013) Atualização das temperaturas de conforto térmico para frangos de corte de até 21 dias de idade. Eng Agríc 33:28–36. https://doi.org/10.1590/S0100-69162013000100004

    Article  Google Scholar 

  • Cecchin D, Campos AT, Cruz VF, Amaral PI, Freitas LCSR, Andrade RR (2017) Thermal environment in growing and finishing pig facilities of different building typologies. J Anim Behav Biometeorol 5:118–123. https://doi.org/10.31893/2318-1265jabb.v5n4p118-123

    Article  Google Scholar 

  • Collier RJ, Gebremedhin KG (2014) Thermal biology of domestic animals. Ann Rev Anim Biosci 3:513–532. https://doi.org/10.1146/annurev-animal-022114-110659

    Article  Google Scholar 

  • Cossins A (2012) Temperature biology of animals. Springer Science & Business Media

  • Curtis SE (1983) Environmental management in animal agriculture. Iowa State University Press, Ames

    Google Scholar 

  • Dal Piva E, Moscati MCDL, Gan MA (2008) Papel dos fluxos de calor latente e sensível em superfície associado a um caso de ciclogênese na costa leste da América do Sul. Rev Bras Meteorol 23:450–476

    Article  Google Scholar 

  • Dalcin VC (2013) Parâmetros fisiológicos em bovinos leiteiros submetidos ao estresse térmico. Dissertation, Federal University of Rio Grande do Sul

  • Dalólio FS, Moreira J, Coelho DJR, Souza FC (2016) Caracterização bioclimática de um galpão experimental de criação de frangos de corte na região de Diamantina-MG. Revista Engenharia Na Agricultura 24:22–31

    Article  Google Scholar 

  • Damasceno FA, Yanagi T Jr, Lima RRD, Gomes RCC, Moraes SRPD (2010) Avaliação do bem-estar de frangos de corte em dois galpões comerciais climatizados. Ciência e Agrotecnologia 34:1031–1038

    Article  Google Scholar 

  • Dantas MRT, Souza Jr JBF, Domingos HGT, Torquato JL, Sá Filho GF, Macedo LLC (2012) Termorregulação de bovinos em ambiente tropical: uma abordagem com ênfase nas respostas fisiológicas. PUBVET. https://doi.org/10.22256/pubvet.v16n7.1306

  • Dikmen S, Hansen PJ (2009) Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? J Dairy Sci 92:109–116. https://doi.org/10.3168/jds.2008-1370

    Article  CAS  Google Scholar 

  • Esmay ML (1979) Principles of animal environment. Environmental Engineering in Agriculture and Food Series. The AVI Publishing Company

  • Ferrari S, Costa A, Guarino M (2013) Heat stress assessment by swine related vocalizations. Livest Sci 151:29–34. https://doi.org/10.1016/j.livsci.2012.10.013

    Article  Google Scholar 

  • Ferraz PFP, Yanagi T Jr, Melo LFLD, Castro JDO, Cecchin D (2018) Spatial and temporal distribution of enthalpy in aviary heated by industrial furnace. Revista Ceres 65:346–355. https://doi.org/10.1590/0034-737x201865040007

    Article  Google Scholar 

  • Furlan RA (2001) Avaliação da nebulização e abertura de cortinas na redução da temperatura do ar em ambiente protegido. Thesis, University of São Paulo

  • Garcia PR (2017) Galpão freestall com sistema de resfriamento evaporativo e ventilação cruzada: desempenho térmico, zootécnico e o nível de bem estar animal. Thesis, University of São Paulo

  • Gonçalves LC, Borges I, Ferreira PDS (2009) Alimentação de gado de leite. FEPMVZ, Belo Horizonte

  • Gonzalez-Rivas PA, Chauhan SS, Ha M, Fegan N, Dunshea FR, Warner RD (2020) Effects of heat stress on animal physiology, metabolism, and meat quality: a review. Meat Sci 162:108025. https://doi.org/10.1016/j.meatsci.2019.108025

    Article  CAS  Google Scholar 

  • Hahn GL (1985) Management and housing of farm animals in hot environment. In: Yousef MK. Stress physiology in livestock, Cap. 2, 151–174

  • Hahn GL (1997) Dynamic responses of cattle to thermal heat loads. J Anim Hermor 77:10–20. https://doi.org/10.2527/1997.77suppl_210x

    Article  Google Scholar 

  • Hannas MI (1999) Aspectos fisiológicos e a produção de suínos em clima quente. In: Ambiência e Qualidade na Produção Industrial de Suínos. FEALQ, Piracicaba

  • Hansen PJ (2004) Physiological and cellular adaptations of zebu cattle to thermal stress. Anim Reprod Sci 82:349–360. https://doi.org/10.1016/j.anireprosci.2004.04.011

    Article  Google Scholar 

  • Henry B, Charmley E, Eckard R, Gaughan JB, Hegarty R (2012) Livestock production in a changing climate: adaptation and mitigation research in Australia. Crop and Pasture Science 63:191–202

    Article  Google Scholar 

  • Herbut P, Angrecka S, Walczak J (2018) Environmental parameters to assessing of heat stress in dairy cattle—a review. International Journal of Biometeorology 62:2089–2097. https://doi.org/10.1007/s00484-018-1629-9

  • Holik V (2009) Management of laying hens to minimize heat stress. Lohmann Inf 44:16–29

    Google Scholar 

  • Hooper HB, Titto CG, Gonella-Diaza AM, Henrique FL, Pulido-Rodríguez LF, Longo ALS, Leme-dos-Santos TMC, Geraldo ACAPM, Pereira AMF, Binelli M, Balieiro JCC, Titto EAL (2019) Heat loss efficiency and HSPs gene expression of Nellore cows in tropical climate conditions. Int J Biometeorol 63:1475–1486. https://doi.org/10.1007/s00484-018-1576-5

    Article  Google Scholar 

  • Huber JT (1990) Alimentação de vacas de alta produção sob condições de estresse térmico. In: ESALQ (ed.) Bovinocultura Leiteira, FEALQ Piracicaba, pp 33-48

  • Igono MO, Bjotvedt G, Sanford-Crane HT (1992) Environmental profile and critical temperature effects on milk production of Holstein cows in desert climate. Int J Biometeorol 36:77–87. https://doi.org/10.1007/BF01208917

    Article  CAS  Google Scholar 

  • Kajaysri J, Wattananorasate A (2018) Influence of heat stress on pregnancy rate of beef cattle heifers and cows using ovsynch plus CIDR followed by timed artificial insemination in Thailand. Thai J Vet Med 48:71–77

    Google Scholar 

  • Katiyatiya CF, Muchenje V (2017) Hair coat characteristics and thermophysiological stress response of Nguni and Boran cows raised under hot environmental conditions. Int J Biometeorol 61:2183–2194. https://doi.org/10.1007/s00484-017-1424-z

    Article  CAS  Google Scholar 

  • Kerr WL (2019). Food drying and evaporation processing operations. In Handbook of farm, dairy and food machinery engineering (pp. 353-387). Academic Press

  • Kumar S, Mathur J, Mathur S, Singh MK, Loftness V (2016) An adaptive approach to define thermal comfort zones on psychrometric chart for naturally ventilated buildings in composite climate of India. Build Environ 109:135–153. https://doi.org/10.1016/j.buildenv.2016.09.023

    Article  Google Scholar 

  • Lara L, Rostagno M (2013) Impact of heat stress on poultry production. Animals 3:356–369. https://doi.org/10.3390/ani3020356

    Article  Google Scholar 

  • Le Dividich JL (1991) Effect of environmental temperature on the performance of intensively reared growing pigs. Selezione Veterinaria 32:191–207

    Google Scholar 

  • Leal PM, Nääs IA (1992) Ambiência animal. In: Cortez LAB, Magalhães PSG (eds) Introdução à engenharia agrícola. Unicamp, Campinas, pp 121–135

    Google Scholar 

  • Li H, Li R, Chen H, Gao J, Wang Y, Zhang Y, Qi Z (2020) Effect of different seasons (spring vs summer) on the microbiota diversity in the feces of dairy cows. Int J Biometeorol 64:345–354. https://doi.org/10.1007/s00484-019-01812-z

    Article  Google Scholar 

  • Lima KAO, Moura DJ, Nääs IA, Perissinotto M (2007) Estudo da influência das ondas de calor sobre a produção de leite no Estado de São Paulo. Revista Brasileira de Engenharia de Biossistemas. https://doi.org/10.18011/bioeng2007v1n1p70-81

  • Lontoc CAA, Punay LCL, Cajano PJ, Vega RS (2018) Comparative performance of sows housed with and without evaporative cooling system at temperature humidity index of 73-83. Philippine J Vet Anim Sci 42:77–84

    Google Scholar 

  • Lourençoni D, Yanagi Junior T, Yanagi SDN, Abreu PGD, Campos AT (2019) Productive responses from broiler chickens raised in different commercial production system-part II: impact of climate change. Engenharia Agrícola 39:11–17. https://doi.org/10.1590/1809-4430-eng.agric.v39n1p11-17/2019

    Article  Google Scholar 

  • Lucas EM, Cruz VF (1997) Efeito do clima do Alentejo no microclima das instalações para suínos. Revista Portuguesa de Zootecnia 4:37–52

    Google Scholar 

  • Lucy MC, Safranski TJ (2017) Heat stress in pregnant sows: thermal responses and subsequent performance of sows and their offspring. Mol Reprod Dev 84:946–956. https://doi.org/10.1002/mrd.22844

    Article  CAS  Google Scholar 

  • Macari M, Furlan RL (2001) Ambiência na produção de aves de corte. In: Silva IJO (ed) Ambiência na produção de aves em clima tropical. FUNEP, Piracicaba: FUNEP, pp. 31–87

  • Madhusoodan AP, Veerasamy S, Rashamol VP, Savitha ST, Madiajagan B, Govindan K, Raghavendra B (2019) Resilient capacity of cattle to environmental challenges-an updated review. J Anim Behav Biometeorol 7:104–118. https://doi.org/10.31893/2318-1265jabb.v7n3p104-118

    Article  Google Scholar 

  • Martello LS, Savastano H Jr, Silva SL, Titto EAL (2004) Respostas fisiológicas e produtivas de vacas holandesas em lactação submetidas a diferentes ambientes. Rev Bras Zootec 14:406–412. https://doi.org/10.1590/S1519-99402013000300016

    Article  Google Scholar 

  • Mascarenhas NMH, Costa ANLD, Pereira MLL, Caldas ACAD, Batista LF, Andrade ELG (2018) Thermal conditioning in the broiler production: challenges and possibilities. J Anim Behav Biometeorol 6:52–55. https://doi.org/10.31893/2318-1265jabb.v6n2p52-55

    Article  Google Scholar 

  • Mathur PK, Horst P (1994) Genotype by environment interactions in laying hens based on relationship between breeding values of sires in temperate and tropical environments. Poult Sci 73:1777–1784. https://doi.org/10.3382/ps.0731777

    Article  CAS  Google Scholar 

  • Mello JLM, Berton MP, Dourado RC et al (2017) Physical and chemical characteristics of the longissimus dorsi from swine reared in climate-controlled and uncontrolled environments. Int J Biometeorol 61:1723–1731. https://doi.org/10.1007/s00484-017-1354-9

    Article  Google Scholar 

  • Menegali I, Tinôco IFF, Baêta FC, Cecon PR, Guimarães MCC, Cordeiro MB (2009) Ambiente térmico e concentração de gases em instalações para frangos de corte no período de aquecimento. Rev Bras Eng Agríc Ambient 13:984–990. https://doi.org/10.1590/S1415-43662009000700022

    Article  Google Scholar 

  • Menegassi SRO, Pereira GR, Bremm C, Koetz C Jr, Lopes FG, Fiorentini EC, McManus C, Dias EA, da Rocha MK, Lopes RB, Barcellos JOJ (2016) Effects of ambient air temperature, humidity, and wind speed on seminal traits in Braford and Nellore bulls at the Brazilian Pantanal. Int J Biometeorol 60:1787–1794. https://doi.org/10.1007/s00484-016-1167-2

    Article  Google Scholar 

  • Mostaço GM (2014) Determinação da temperatura retal e frequência respiratória de suínos em fase de creche por meio da temperatura da superfície corporal em câmara climática. Dissertation, University of São Paulo

  • Moura DJ (1999) Ventilação na suinocultura. In: Silva IJO (ed) Ambiência e qualidade na produção industrial de suínos. FEALQ, Piracicaba, pp. 149–179

  • Nääs IA (1989) Princípios de conforto térmico na produção animal. Icone: São Paulo

  • Nääs IA (1998) Tipologia de instalações em clima quente. Simpósio Brasileiro de Ambiência na Produção de Leite, 1:146–155

  • Nascimento ST, Maia ASC, Fonsêca VDFC, Nascimento CCN, Carvalho MD, Pinheiro MG (2019) Physiological responses and hermo equilibrium of Jersey dairy cows in tropical environment. Int J Biometeorol 63:1487–1496. https://doi.org/10.1007/s00484-019-01734-w

    Article  Google Scholar 

  • Nazareno AC, Pandorfi H, Almeida GL, Giongo PR, Pedrosa EM, Guiselini C (2009) Avaliação do conforto térmico e desempenho de frangos de corte sob regime de criação diferenciado. Rev Bras Eng Agríc Ambient 13:802–808. https://doi.org/10.1590/S1415-43662009000600020

    Article  Google Scholar 

  • Nazareno AC, Silva IJO, Nunes MLA, Castro AC, Miranda KOS, Trabachini A (2012) Caracterização bioclimática de sistemas ao ar livre e confinado para a criação de matrizes suínas gestantes. Rev Bras Eng Agríc Ambient 16:314–319. https://doi.org/10.1590/S1415-43662012000300013

    Article  Google Scholar 

  • Nazareno AC, Silva IJO, Vieira F, Camargo JR, Medeiros SR (2013) Caracterização do microclima dos diferentes layouts de caixas no transporte de ovos férteis. Rev Bras Eng Agric Ambient-Agriambi 17:327–332. https://doi.org/10.1590/S1415-43662013000300012

    Article  Google Scholar 

  • Nepomuceno GL, Cecchin D, Campos AT, Amaral PIS, Freitas LCSR, Sousa FA, Ferraz PFP (2018) Ambiente Térmico Em Diferentes Tipologias De Creches Para Leitões. Revista Brasileira de Engenharia de Biossistemas 12:394–400. https://doi.org/10.18011/bioeng2018v12n4p394-400

    Article  Google Scholar 

  • Nienaber JA, Hahn GL, Yen JT (1987) Thermal environment effects on growing-finishing swine, part I – growth, feed intake and heat production. Trans ASAE 30:1772–1775

    Article  Google Scholar 

  • Noblet J, Dourmad JY, Dividich J, Dubois S (1989) Effect of ambient temperature and addition of straw or alfafa in the diet on energy metabolism in pregnant sows. Livest Prod Sci 21:309–324. https://doi.org/10.1016/0301-6226(89)90091-2

    Article  Google Scholar 

  • North MO, Bell DD (1990) Commercial chicken production manual, 4th edn. Van Nostrad Reinhold, New York, p 456

    Google Scholar 

  • Nunes ML, Miranda KODS, Faria JM, Vieira A, Arcaro Júnior I (2014) Physiological evaluation of heat stress in gestating sows under different housing systems in bedding and concrete floor. Eng Agríc 34:1–7. https://doi.org/10.1590/S0100-69162014000100001

    Article  Google Scholar 

  • Oliveira RFMD, Donzele JL, Abreu MLTD, Ferreira RA, Vaz RGMV, Cella JÁ (2006) Efeitos da temperatura e da umidade relativa sobre o desempenho e o rendimento de cortes nobres de frangos de corte de 1 a 49 dias de idade. Rev Bras Zootec 35:797–803. https://doi.org/10.1590/S1516-35982006000300023

    Article  Google Scholar 

  • Oliveira DL, Do Nascimento JW, Camerini NL, Silva RC, Furtado DA, Araujo TG (2014) Desempenho e qualidade de ovos de galinhas poedeiras criadas em gaiolas enriquecidas e ambiente controlado. Rev Bras Eng Agric Ambient-Agriambi 18:1186–1191. https://doi.org/10.1590/1807-1929/agriambi.v18n11p1186-1191

    Article  Google Scholar 

  • Padilla L, Matsui T, Kamiya Y, Kamiya M, Tanaka M, Yano H (2006) Heat stress decreases plasma vitamin C concentration in lactating cows. Livest Sci 101:300–304. https://doi.org/10.1016/j.livprodsci.2005.12.002

    Article  Google Scholar 

  • Perdomo CC (1995) Avaliação de sistemas de ventilação sobre o condicionamento ambiental e o desempenho de suínos na fase de maternidade. Thesis, Federal University of Rio Grande do Sul

  • Pereira CCJ (2005) Fundamentos de Bioclimatologia Aplicados à Produção Animal. FEPMVZ, Belo Horizonte

  • Pereira MG, Galvão TF (2014) Etapas de busca e seleção de artigos em revisões sistemáticas da literatura. Epidemiologia e Serviços de Saúde 23:369–371. https://doi.org/10.5123/S1679-49742014000200019

    Article  Google Scholar 

  • Polsky L, Von Keyserlingk MA (2017) Invited review: effects of heat stress on dairy cattle welfare. J Dairy Hermor. https://doi.org/10.3168/jds.2017-12651

  • Queiroz MLV, Barbosa Filho JAD, Vieira FMC (2012) Guia prático para a utilização de tabelas de entalpia. http://www.neambe.ufc.br/arquivos_download/Guia%20Pratico%20de%20Utiliza%C3%A7%C3%A3o%20das%20Tabelas.pdf. Accessed on: Aug 08, 2019

  • Queiroz MLV, Barbosa Filho JAD, Lima Sales FA, Lima LR, Duarte LM (2017) Variabilidade espacial do ambiente em galpões de frango de corte com sistema de nebulização. Rev Ciênc Agron 48:586–595. https://doi.org/10.5935/1806-6690.20170068

    Article  Google Scholar 

  • Rashamol VP, Sejian V, Bagath M, Krishnan G, Archana PR, Bhatta R (2018) Physiological adaptability of livestock to heat stress: an updated review. J Anim Behav Biometeorol 6:62–71. https://doi.org/10.31893/2318-1265jabb.v6n3p62-71

    Article  Google Scholar 

  • Rashamol VP, Sejian V, Pragna P, Lees AM, Bagath M, Krishnan G, Gaughan JB (2019) Prediction models, assessment methodologies and biotechnological tools to quantify heat stress response in ruminant livestock. Int J Biometeorol:1–17. https://doi.org/10.1007/s00484-019-01735-9

  • Ren HS (2004) Construction of a generalized psychrometric chart for different pressures. Int J Mech Eng Educ 32:212–222. https://doi.org/10.7227/IJMEE.32.3.3

    Article  Google Scholar 

  • Renaudeau D, Collin A, Yahav S, Basilio V, Gourdine JL, Collier RJ (2011) Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal. 6:707–728. https://doi.org/10.1017/s1751731111002448

    Article  Google Scholar 

  • Ribeiro BPVB, Lanferdini E, Palencia JYP, Lemes MAG, Abreu MLT, Cantarelli VS, Ferreira RA (2018) Heat negatively affects lactating swine: a meta-analysis. J Therm Biol 74:325–330. https://doi.org/10.1016/j.jtherbio.2018.04.015

    Article  Google Scholar 

  • Ricci GD, Orsi AM, Domingues PF (2013) Estresse calórico e suas interferências no ciclo de produção de vacas de leite: revisão. Vet Zootec 20:9–18

    Google Scholar 

  • Rodrigues VC, Silva IJO, Vieira FMC, Nascimento ST (2011) A correct enthalpy relationship as thermal comfort index for livestock. Int J Biometeorol 55:455–459. https://doi.org/10.1007/s00484-010-0344-y

    Article  Google Scholar 

  • Roenfeldt S (1998) You can’t afford to ignore heat stress. Dairy Manag 35:6–12

    Google Scholar 

  • Rojas-Downing MM, Nejadhashemi AP, Harrigan T, Woznicki SA (2017) Climate change and livestock: impacts, adaptation, and mitigation. Clim Risk Manag 16:145–163. https://doi.org/10.1016/j.crm.2017.02.001

    Article  Google Scholar 

  • Romanello N, Junior JDBL, Junior WB et al (2018) Thermoregulatory responses and reproductive traits in composite beef bulls raised in a tropical climate. Int J Biometeorol 62:1575–1586. https://doi.org/10.1007/s00484-018-1557-8

    Article  Google Scholar 

  • Ross JW, Hale BJ, Gabler NK, Rhoads RP, Keating AF, Baumgard LH (2015) Physiological consequences of heat stress in pigs. Anim Prod Sci 55:1381–1390. https://doi.org/10.1071/AN15267

    Article  CAS  Google Scholar 

  • Saint-Pierre NR, Cobanov B, Schnitkey G (2003) Economic losses from heat stress by US livestock industries. J Dairy Sci 86:E52–E77. https://doi.org/10.3168/jds.S0022-0302(03)74040-5

    Article  Google Scholar 

  • Sanker C, Lambertz C, Gauly M (2013) Climatic effects in Central Europe on the frequency of medical treatments of dairy cows. Animal 7:316–321

    Article  CAS  Google Scholar 

  • Santos VM, Dallago BS, Racanicci AM, Santana ÂP, Cue RI, Bernal FE (2020) Effect of transportation distances, seasons and crate microclimate on broiler chicken production losses. PLoS One 15:e0232004. https://doi.org/10.1371/journal.pone.0232004

    Article  CAS  Google Scholar 

  • Sarnighausen VCR (2019) Estimation of thermal comfort indexes for production animals using multiple linear regression models. J Anim Behav Biometeorol 7:73–77. https://doi.org/10.31893/2318-1265jabb.v7n2p73-77

    Article  Google Scholar 

  • Sevegnani KB, Fernandes DP, Silva SH (2016) Evaluation of thermoregulatory capacity of dairy buffaloes using infrared thermography. Eng Agríc 36:1–12. https://doi.org/10.1590/1809-4430-Eng.Agric.v36n1p1-12/2016

    Article  Google Scholar 

  • Silva IJO (1999). Qualidade do ambiente e instalações na produção industrial de suínos. In: Seminário Internacional de Suinocultura. EMBRAPA, Concórdia, pp. 108–325

  • Silva IJO, Sevegnani KB (2001) Ambiência na produção de aves de postura. In: Silva IJO (ed) Ambiência na produção de aves em clima tropical. FUNEP, Piracicaba, pp. 150–214

  • Silva RC, Nascimento JWB, Oliveira DL, Camerini NL, Furtado DA (2012) Força de ruptura da casca do ovo em função das temperaturas da água e do ambiente. Revista Educação Agrícola Superior 27:13–18. https://doi.org/10.12722/0101-756X.v27n01a02

    Article  Google Scholar 

  • Silva KC, Campos AT, Yanagi T Jr, Cecchin D, Lourençoni D, Ferreira JC (2015) Reaproveitamento de resíduos de embalagens Tetra Pak-® em coberturas. Rev Bras Eng Agric Ambient-Agriambi 19:58–63. https://doi.org/10.1590/1807-1929/agriambi.v19n1p58-63

    Article  Google Scholar 

  • Silva NCD, Santos RC, Zucca R, Geisenhoff LO, Cesca RS, Lovatto J (2020) Enthalpy thematic map interpolated with spline method for management of broiler chicken production. Rev Bras Eng Agríc Ambient 24:431–436. https://doi.org/10.1590/1807-1929/agriambi.v24n7p431-436

    Article  Google Scholar 

  • Silva-Miranda KOD, Borges G, Menegale VLDC, Silva IJO (2012) Efeito das condições ambientais no nível de ruído emitido por leitões. Eng Agríc 32:435–445. https://doi.org/10.1590/S0100-69162012000300003

    Article  Google Scholar 

  • Singh AK, Singh H, Singh SP, Sawhney RL (2002) Numerical calculation of psychrometric properties on a calculator. Build Environ 37:415–419. https://doi.org/10.1016/S0360-1323(01)00032-4

    Article  Google Scholar 

  • Sobestiansky J, Perdomo CC, Oliveira PAV, Oliveira JÁ (1987) Efeito de diferentes sistemas de aquecimento no desempenho de leitões. EMBRAPA, Concórdia

  • Soldatos AG, Arvanitis KG, Daskalov PI, Pasgianos GD, Sigrimis NA (2005) Nonlinear robust temperature–humidity control in livestock buildings. Comput Electron Agric 49:357–376. https://doi.org/10.1016/j.compag.2005.08.008

    Article  Google Scholar 

  • Sultan M, Miyazaki T, Mahmood MH, Khan ZM (2018) Solar assisted evaporative cooling based passive air-conditioning system for agricultural and livestock applications. J Eng Sci Technol 13:693–703

    Google Scholar 

  • Teeter RG, Belay T (1996) Broiler management during acute hear stress. Anim Feed Sci Technol 58:127–142. https://doi.org/10.1016/0377-8401(95)00879-9

    Article  Google Scholar 

  • Teitelbaum E, Jayathissa P, Miller C, Meggers F (2020) Design with comfort: expanding the psychrometric chart with radiation and convection dimensions. Energy Build 209:109591. https://doi.org/10.1016/j.enbuild.2019.109591

    Article  Google Scholar 

  • Thom EC (1959) The discomfort índex. Weatherwise 12:57–59

    Article  Google Scholar 

  • Tinôco IFF (2001) Avicultura Industrial: Novos Conceitos de Materiais, Concepções e Técnicas Construtivas Disponíveis para Galpões Avícolas Brasileiros. Rev Bras Cienc Avic 3:01–26. https://doi.org/10.1590/S1516-635X2001000100001

    Article  Google Scholar 

  • Valente ÉEL, Chizzotti ML, Oliveira CVRO, Galvão MC, Domingues SS, Rodrigues AC, Ladeira MM (2015) Intake, physiological parameters and behavior of Angus and Nellore bulls subjected to heat stress. Semina 36:4565–4574. https://doi.org/10.5433/1679-0359.2015v36n6Supl2p4565

    Article  Google Scholar 

  • Vasconcelos AM, Albuquerque CC, Carvalho JF, Façanha DAE, Lima FRG, Silveira RMF, Ferreira J (2020) Adaptive profile of dairy cows in a tropical region. Int J Biometeorol 64:105–113. https://doi.org/10.1007/s00484-019-01797-9

    Article  Google Scholar 

  • Veit HP, Troutt HF (1982) Monitoring air quality for livestock respiratory health. Vet Med Small Anim Clin 77:454–464

    Google Scholar 

  • Vieira FMC, Groff PM, Silva IJO, Nazareno AC, Godoy TF, Coutinho LL, Vieira AMC, Silva-Miranda KO (2019) Impact of exposure time to harsh environments on physiology, mortality, and thermal comfort of day-old chickens in a simulated condition of transport. Int J Biometeorol 63:777–785. https://doi.org/10.1007/s00484-019-01691-4

    Article  Google Scholar 

  • Wang RH, Liang RR, Lin H, Zhu LX, Zhang YM, Mao YW, Luo X (2017) Effect of acute heat stress and slaughter processing on poultry meat quality and postmortem carbohydrate metabolism. Poult Sci 96:738–746. https://doi.org/10.3382/ps/pew329

    Article  CAS  Google Scholar 

  • West JW (2003) Effects of heat-stress on production in dairy cattle. J Dairy Sci 86:2131–2144. https://doi.org/10.3168/jds.S0022-0302(03)73803-X

    Article  CAS  Google Scholar 

  • Yousef MK (1985) Thermoneutral zone. Stress Physiol Livest 1:67–73

    Google Scholar 

  • Zotti ML, Miranda KODS, Vieira A, Demsk JB, Romano GG (2019) Reproductive efficiency and behavior of pregnant sows housed in cages and collective pens with or without bedding. Eng Agríc 39:166–175. https://doi.org/10.1590/1809-4430-eng.agric.v39n2p166-175/2019

    Article  Google Scholar 

Download references

Acknowledgments

To the Coordination for the Improvement of Higher Education Personnel – Capes for the support to carry out the project.

Funding

Coordination for the Improvement of Higher Education Personnel – Capes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio Luis de Castro Júnior.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Castro Júnior, S.L., Silva, I.J.O.d. The specific enthalpy of air as an indicator of heat stress in livestock animals. Int J Biometeorol 65, 149–161 (2021). https://doi.org/10.1007/s00484-020-02022-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-020-02022-8

Keywords

Navigation