Skip to main content
Log in

Influence of lateral confinement on granular flows: comparison between shear-driven and gravity-driven flows

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The properties of confined granular flows are studied through discrete numerical simulations. Two types of flows with different boundaries are compared: (i) gravity-driven flows topped with a free surface and over a base where erosion balances accretion (ii) shear-driven flows with a constant pressure applied at their top and a bumpy bottom moving at constant velocity. In both cases we observe shear localization over or/and under a creep zone. We show that, although the different boundaries induce different flow properties (e.g. shear localization of transverse velocity profiles), the two types of flow share common properties like (i) a power law relation between the granular temperature and the shear rate (whose exponent varies from 1 for dense flows to 2 for dilute flows) and (ii) a weakening of friction at the sidewalls which gradually decreases with the depth within the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jop, P., Forterre, Y., Pouliquen, O.: Crucial role of sidewalls in granular surface flows: consequences for the rheology. J. Fluid Mech. 541, 167–192 (2005)

    Article  ADS  Google Scholar 

  2. Taberlet, N., Richard, P., Henry, E., Delannay, R.: The growth of a super stable heap: an experimental and numerical study. EPL (Europhys. Lett.) 68(4), 515–521 (2004)

    Article  ADS  Google Scholar 

  3. Farin, M., Mangeney, A., Roche, O.: Fundamental changes of granular flow dynamics, deposition, and erosion processes at high slope angles: Insights from laboratory experiments. J. Geophys. Res. Earth Surface 119, 504–532 (2014)

    Article  ADS  Google Scholar 

  4. Lefebvre, G., Merceron, A., Jop, P.: Interfacial instability during granular erosion. Phys. Rev. Lett. 116, 068002 (2016)

    Article  ADS  Google Scholar 

  5. Jenkins, J.T., Berzi, D.: Erosion and deposition in depth-averaged models of dense, dry, inclined, granular flows. Phys. Rev. E 94, 052904 (2016)

    Article  ADS  Google Scholar 

  6. Trinh, T., Boltenhagen, P., Delannay, R., Valance, A.: Erosion and deposition processes in surface granular flows. Phys. Rev. E 96, 042904 (2017)

    Article  ADS  Google Scholar 

  7. Vescovi, D., Luding, S.: Merging fluid and solid granular behavior. Soft Matter 12, 8616–8628 (2016)

    Article  ADS  Google Scholar 

  8. Vescovi, D., Berzi, D., di Prisco, C.: Fluid-solid transition in unsteady, homogeneous, granular shear flows. Granular Matter 20(2), 27 (2018)

    Article  Google Scholar 

  9. Richard, P., Valance, A., Métayer, J.-F., Sanchez, P., Crassous, J., Louge, M., Delannay, R.: Rheology of confined granular flows: Scale invariance, glass transition, and friction weakening. Phys. Rev. Lett. 101(24), 248002 (2008)

    Article  ADS  Google Scholar 

  10. Taberlet, N., Richard, P., Delannay, R.: The effect of sidewall friction on dense granular flows. Comput. Math. Appl. 55(2), 230–234 (2008)

    Article  Google Scholar 

  11. Holyoake, A.J., McElwaine, J.N.: High-speed granular chute flows. J. Fluid Mech. 710, 35–71 (2012)

    Article  ADS  Google Scholar 

  12. Brodu, N., Richard, P., Delannay, R.: Shallow granular flows down flat frictional channels: steady flows and longitudinal vortices. Phys. Rev. E 87, 022202 (2013)

    Article  ADS  Google Scholar 

  13. Brodu, N., Delannay, R., Valance, A., Richard, P.: New patterns in high-speed granular flows. J. Fluid Mech. 769, 218–228 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. Artoni, R., Richard, P.: Effective wall friction in wall-bounded 3d dense granular flows. Phys. Rev. Lett. 115, 158001 (2015)

    Article  ADS  Google Scholar 

  15. Artoni, R., Soligo, A., Paul, J.-M., Richard, P.: Shear localization and wall friction in confined dense granular flows. J. Fluid Mech. 849, 395–418 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  16. Zhang, Q., Kamrin, K.: Microscopic description of the granular fluidity field in nonlocal flow modeling. Phys. Rev. Lett. 118, 058001 (2017)

    Article  ADS  Google Scholar 

  17. Rajchenbach, J.: Granular flows. Adv. Phys. 49(2), 229–256 (2000)

    Article  ADS  Google Scholar 

  18. Jean, M.: The non-smooth contact dynamics method. Comput. Methods Appl. Mech. Eng. 177(3–4), 235–257 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  19. Taberlet, N., Richard, P., Valance, A., Losert, W., Pasini, J.M., Jenkins, J.T., Delannay, R.: Superstable granular heap in a thin channel. Phys. Rev. Lett. 91(26), 264301 (2003)

    Article  ADS  Google Scholar 

  20. Richard, P., Valance, A., Delannay, R., Boltenhagen, P.: in preparation, (2020)

  21. Gollin, D., Berzi, D., Bowman, E.T.: Extended kinetic theory applied to inclined granular flows: role of boundaries. Granular Matter 19, 56 (2017)

    Article  Google Scholar 

  22. Berzi, D., Jenkins, J.T., Richard, P.: Erodible, granular beds are fragile. Soft Matter 15, 7173–7178 (2019)

    Article  ADS  Google Scholar 

  23. Berzi, D., Jenkins, J.T., Richard, P.: Extended kinetic theory for granular flow over and within an inclined erodible bed. J. Fluid Mech. 885, A27 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  24. Richard, P., McNamara, S., Tankeo, M.: Relevance of numerical simulations to booming sand. Phys. Rev. E 85, 010301 (2012)

    Article  ADS  Google Scholar 

  25. Renouf, M., Dubois, F., Alart, P.: A parallel version of the non smooth contact dynamics algorithm applied to the simulation of granular media. J. Comput. Appl. Math. 168(1), 375–382 (2004). Selected Papers from the Second International Conference on Advanced Computational Methods in Engineering (ACOMEN 2002)

  26. Komatsu, T.S., Inagaki, S., Nakagawa, N., Nasuno, S.: Creep motion in a granular pile exhibiting steady surface flow. Phys. Rev. Lett. 86(9), 1757–1760 (2001)

    Article  ADS  Google Scholar 

  27. Crassous, J., Metayer, J.-F., Richard, P., Laroche, C.: (2008) Experimental study of a creeping granular flow at very low velocity. J. Stat. Mech. Theory Exp. 2008(03), 03009 (2008)

    Article  Google Scholar 

  28. de Ryck, A.: Granular flows down inclined channels with a strain-rate dependent friction coefficient part ii: cohesive materials. Granular Matter 10, 361–367 (2008)

    Article  Google Scholar 

  29. Moosavi, R., Shaebani, M.R., Maleki, M., Török, J., Wolf, D.E., Losert, W.: Coexistence and transition between shear zones in slow granular flows. Phys. Rev. Lett. 111, 148301 (2013)

    Article  ADS  Google Scholar 

  30. Artoni, R., Richard, P.: Torsional shear flow of granular materials: shear localization and minimum energy principle. Comput. Part. Mech. 5, 3–12 (2018)

    Article  Google Scholar 

  31. Jenkins, J., Berzi, D.: Dense inclined flows of inelastic spheres: tests of an extension of kinetic theory. Granular Matter 12, 151–158 (2010). https://doi.org/10.1007/s10035-010-0169-8

    Article  MATH  Google Scholar 

  32. Losert, W., Bocquet, L., Lubensky, T.C., Gollub, J.P.: Particle dynamics in sheared granular matter. Phys. Rev. Lett. 85, 1428–1431 (2000)

    Article  ADS  Google Scholar 

  33. Mueth, D.M.: Measurements of particle dynamics in slow, dense granular couette flow. Phys. Rev. E 67, 011304 (2003)

    Article  ADS  Google Scholar 

  34. Orpe, A.V., Khakhar, D.V.: Rheology of surface granular flows. J. Fluid Mech. 571, 1–32 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  35. Zhang, S., Yang, G., Lin, P., Chen, L., Yang, L.: Inclined granular flow in a narrow chute. Eur. Phys. J. E 42(4), 40 (2019)

    Article  Google Scholar 

  36. Yang, F., Huang, Y.: New aspects for friction coefficients of finite granular avalanche down a flat narrow reservoir. Granular Matter 18(4), 77 (2016)

    Article  Google Scholar 

  37. Johnson, P.C., Jackson, R.: Frictional-collisional constitutive relations for granular materials, with application to plane shearing. J. Fluid Mech. 176, 67–93 (1987)

    Article  ADS  Google Scholar 

  38. Richman, M.W.: Boundary conditions based upon a modified maxwellian velocity distribution for flows of identical, smooth, nearly elastic spheres. Acta Mech. 75, 227–240 (1988)

    Article  Google Scholar 

  39. Jenkins, J., Berzi, D.: Kinetic theory applied to inclined flows. Granular Matter 14, 79–84 (2012). https://doi.org/10.1007/s10035-011-0308-x

    Article  Google Scholar 

  40. Kamrin, K., Koval, G.: Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108, 178301 (2012)

    Article  ADS  Google Scholar 

  41. Bouzid, M., Trulsson, M., Claudin, P., Clément, E., Andreotti, B.: Nonlocal rheology of granular flows across yield conditions. Phys. Rev. Lett. 111, 238301 (2013)

    Article  ADS  Google Scholar 

  42. Kamrin, K., Henann, D.L.: Nonlocal modeling of granular flows down inclines. Soft Matter 11, 179–185 (2015)

    Article  ADS  Google Scholar 

  43. Nott, P.R.: A non-local plasticity theory for slow granular flows. EPJ Web Conf. 140, 11015 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ph. Boltenhagen for fruitful discussion on granular chute flows. The numerical simulations were carried out at the CCIPL (Centre de Calcul Intensif des Pays de la Loire).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Richard.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection: Flow regimes and phase transitions in granular matter: multiscale modeling from micromechanics to continuum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richard, P., Artoni, R., Valance, A. et al. Influence of lateral confinement on granular flows: comparison between shear-driven and gravity-driven flows. Granular Matter 22, 81 (2020). https://doi.org/10.1007/s10035-020-01057-3

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-020-01057-3

Keywords

Navigation