Skip to main content

Advertisement

Log in

Relevant phenotypic descriptors of the resonance Norway spruce standing trees for the acoustical quality of wood for musical instruments

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Identifying high-grade valuable wood resources by the visible individual traits of trees is a challenge for foresters and a requirement for sustainable resource management. The aim of this study was to identify the most relevant phenotypic descriptors of the acoustic quality of Norway spruce standing timber. Two highly valuable Norway spruce (Picea abies) stands located in the Romanian Carpathians were selected for this purpose. A total of 27 tree, bole, bark, and crown variables and nine variables related to wood structure were statistically checked against the velocities of stress waves measured on standing trees at breast height, and the derived parameters: the radiation, the impedance, and the moduli of elasticity in L and R directions. Principal component analysis was used for exploratory data analysis as well as mixed linear models were involved in explaining these acoustics. There were consistent variations in the measured acoustics from tree to tree, according to the age and social class. Wood acoustical parameters measured in the R direction are better predicted by tree phenotype than the acoustical parameters measured in the L direction. Bark thickness and branch width were the best predictors, while tree ring features were less predictive. At a given age, trees with high velocity had thinner and reddisher bark, thinner branches, and a narrower crown. Trees with high velocity anisotropy had narrower branches and wider sapwood. Furthermore, the phenotypic traits used had a poor explanatory power of the radiation ratio. In conclusion, spruce standing trees from the studied area bring forward certain outside features that enable us the multitrait identification of highly valuable wood for string instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Albu CT (2010) Research on the characteristics of resonance spruce wood from Gurghiu River Basin in conjunction with the requirements of musical instruments industry. PhD Thesis, Transilvania University of Brașov (in Romanian)

  • Badea M (1965) În problema gospodăririi pădurilor cu lemn de rezonanță [On management of stands with resonance wood]. Revista Pădurilor 80(7):358–361

    Google Scholar 

  • Beldeanu EC (1999) Produse forestiere și studiul lemnului [Forest products and Wood science]. Transilvania University Publishing House, Brașov

    Google Scholar 

  • Beldeanu EC (2006) Cercetări privind lungimea traheidelor axiale la arborii de molid de rezonanţă [Research on the length of axial tracheids in Norway spruce resonance trees]. Revista Pădurilor 121(2):9–13

    Google Scholar 

  • Benea V, Enescu V, Enescu V, Spîrchez Z, Lăzărescu C (1960) Cercetări privind stabilitatea criteriilor de alegere a arboretelor valoroase pentru rezervaţii de seminţe la stejar (Quercus robur L.), gorun (Quercus petraea Liebl.) şi molid (Picea excelsa Link.) [Research concerning the set-up of selection criteria for the valuable seed stands of pedunculate oak (Quercus robur L.), sessile oak (Quercus petraea Liebl.) and Norway spruce (Picea excelsa Linx.)]. Ann For Res 21(1):76–100

    Google Scholar 

  • Bolea V, Ienășoiu G (2011) Regele molizilor din Poiana Brașov [King of spruces from Poiana Brașov]. Revista de Silvicultură și Cinegetică 29:53–60

    Google Scholar 

  • Bonamini G (2002) La ricerca sul legno di risonanza di Paneveggio [Research on resonance wood from Paneveggio forest]. In: Atti del Convegno Predazzo 10, 11 Settembre 1998 e ulteriori contributi. Ufficio Forestale Domaniali di Cavalese e Primiero, pp 49–81

  • Brémaud I (2006) Diversité des bois utilisés ou utilisable en facture d’instruments de musique. PhD Thesis, Montpellier II University (in French)

  • Brémaud I (2012) What do we know on resonance wood properties? Selective review and ongoing research. In: Proceedings of the Acoustics 2012 Nantes Conference, Nantes, pp 2760–2764

  • Brown MB, Forsythe AB (1974) Robust tests for the equality of variances. J Am Stat Assoc 69:364–367. https://doi.org/10.1080/01621459.1974.10482955

    Article  Google Scholar 

  • Bucur V (1976) Proprietățile acustice ale lemnelor de rezonanță utilizate în luterie [Acoustical properties of resonance woods for luthiers]. Industria Lemnului 27(1):23–29

    Google Scholar 

  • Bucur V (1980) Anatomical structure and some acoustical properties of resonance wood. Catgut Acoust Soc Newsl 33(1):24–29

    Google Scholar 

  • Bucur V (1983) Vers une appréciation objective des propriétés des bois du violon [To an objective assessment of violin wood properties]. Rev For Fr 32(2):130–137

    Article  Google Scholar 

  • Bucur V (2002) Le proprieta acustiche et elastiche di legno di risonanza in raporto con la sua struttura [Acoustical and elastical properties of resonance wood in relation to its structure]. In: Atti del Convegno Predazzo 10, 11 Settembre 1998 e ulteriori contributi. Ufficio Forestale Domaniali di Cavalese e Primiero, pp 83–91

  • Bucur V (2003) Nondestructive characterization and imaging of wood. Springer, Berlin

    Book  Google Scholar 

  • Bucur V (2006) Acoustics of wood, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Bucur V (2016) Actual provenance of spruce resonance trees and logs. In: Bucur V (ed) Handbook of materials for string instruments. Springer, Basel, pp 649–654. https://doi.org/10.1007/978-3-319-32080-9

    Chapter  Google Scholar 

  • Budeanu M, Şofletea N, Pârnuţă G (2012) Testing Romanian seed sources of Norway spruce (Picea abies): results on growth traits and survival at age 30. Ann For Res 55(1):43–52

    Google Scholar 

  • Caré O, Gailing O, Müller M, Krutovsky K, Leinemann L (2020) Crown morphology in Norway spruce (Picea abies [KARST.] L.) as adaptation to mountainous environments is associated with single nucleotide polymorphisms (SNPs) in genes regulating seasonal growth rhythm. Tree genet genomes 16:4. https://doi.org/10.1007/s11295-019-1394-x

    Article  Google Scholar 

  • Constantinescu N (1965) Importanța molidului de rezonanță pentru mărirea rezistenței molidișurilor la doborâturi de vânt [Importance of resonance spruce for increasing the resistance of Norway spruce forests to windfalls]. Revista Pădurilor 80(1):8–13

    Google Scholar 

  • Corporation Ohaus (2001) MB45 Moisture Analyzer. Instruction Manual. Ohaus Co., Parsippany

    Google Scholar 

  • Dellagiacoma F (2002) Il legno di risonanza della foresta di Paneveggio: aspetti di gestione forestale [Resonance wood from the forest of Panevegio: aspects of forestry management]. In: Atti del Convegno Predazzo 10, 11 Settembre 1998 e ulteriori contributi. Ufficio Forestale Domaniali di Cavalese e Primiero, pp 123–130

  • Dickman DI (1985) The ideotype concept to forest trees. In: Cannel MGR, Jackson JE (eds) Attributes of trees as crop plants. Monks Wood, Abbots Ripton, pp 89–101

    Google Scholar 

  • Dinulică F (2020) Lemnul de rezonanță din Carpați. O introducere în acustica arborilor pentru sunet [Carpathian resonance wood. An introduction to the acoustics of trees for sound]. Transilvania University Press, Brașov

  • Dinulică F, Albu CT, Borz SA, Vasilescu MM, Petritan IC (2015a) Specific structural indexes for resonance Norway spruce wood used for violin manufacturing. BioResources 10:7525–7543. https://doi.org/10.15376/biores.10.4.7525-7543

    Article  Google Scholar 

  • Dinulică F, Albu CT, Zdrob GS (2015b) Ce știm și cât știm cu privire la determinismul molidului de rezonanță? [What and how much do we know about the determinism of resonance Norway spruce?]. Revista Pădurilor 130(5–6):23–40

    Google Scholar 

  • Dinulică F, Albu CT, Vasilescu MM, Stanciu MD (2019) Bark features for identifying resonance spruce standing timber. Forests 10(9):799. https://doi.org/10.3390/f10090799

    Article  Google Scholar 

  • Domont P (2000) Mise en valeur des bois de résonance en Suisse [Development of resonance wood in Switzerland]. Rapport final projet no. 5.162. http://www.waldwissen.net/waldwirtschaft/holz/verarbeitung/wsl_klangholz/wsl_klangholz_rapport_final.pdf. Accessed 29 Feb 2016

  • Dumitrescu P (1969) Rupturi și doborâturi de zăpadă în ocolul silvic Gurghiu [Snow breaks and snow-blow-downs in the Gurghiu forest district]. Revista Pădurilor 84(5):228–231

    Google Scholar 

  • Dvorak V, Oplustilova M, Janous D (1996) Relation between leaf biomass and annual ring sapwood of Norway spruce according to needle age-class. Can J For Res 26(10):1822–1827. https://doi.org/10.1139/x26-207

    Article  Google Scholar 

  • Fedyukov VI, Saldaeva EY, Chernova MS, Chernov VY (2017) Cone morphology as a diagnostic attribute of resonant properties of standing spruce wood. Drvna Industrija 68(4):333–340

    Article  Google Scholar 

  • Fedyukov VI, Saldaeva EY, Chernova MS, Chernov VY (2018) Biomorphology of spruce trees as a diagnostic attribute for non-destructive selection of resonant wood in a forest. South-east Eur For 9(2):147–153. https://doi.org/10.15177/seefor.18-11

    Article  Google Scholar 

  • Geambașu N (1995) Cercetări privind gospodărirea arboretelor de molid de rezonanță și claviatură [Research on the management of Norway spruce resonance and keyboard stands]. Tehnică Silvică Publishing House, Bucharest

    Google Scholar 

  • Geambașu N (2001) Cercetări privind mediul biotic de dezvoltare al molidului de rezonanță [Researches concerning the growth biotic environment of the resonance spruce]. Revista Pădurilor 116(6):27–31

    Google Scholar 

  • Ghelmeziu N, Beldie IP (1970) Despre caracteristicile lemnului de rezonanță de molid [On the characteristics of resonance spruce wood]. Bull Transilvania Univ Braşov 12(1):315–326

    Google Scholar 

  • Giordano G (1981) Technologia del legno [Wood technology], vol 1, 2nd edn. UTET, Torino

    Google Scholar 

  • Gliga VG, Stanciu MD, Năstac SM, Dinulică F, Campean M (2019) Study concerning the natural frequency and damping factor of the top and back plate for different types of violins. Pro Ligno 15(4):67–74

    Google Scholar 

  • Grapini V, Constantinescu N (1968) Molidul de rezonanță [Resonance spruce]. Institutul de Cercetări Forestiere, Bucharest

    Google Scholar 

  • Halabe UB, Bidigalu GM, GangaRao HVS, Ross RJ (1996) Nondestructive evaluation of green dimension lumber using stress wave and transverse vibration techniques. In: Thompson DO, Chimenti DE (eds) Review of progress in quantitative nondestructive evaluation. Springer, Boston, pp 1891–1894

    Chapter  Google Scholar 

  • Hunt RWG (1998) Measuring colour, 3rd edn. Fountain Press, Kingston-upon-Thames

    Google Scholar 

  • Hutchins CM (1978) Wood for violins. Catgut Acoust Soc Newsl 29:14–18

    Google Scholar 

  • Ille R (1975) Eigenschaften und Verarbeitung von Fichtenresonanzholz für Meistergeigen [Properties and processing of spruce resonance wood for violins]. Holztechnologie 15(2):95–101

    Google Scholar 

  • Kaufmann MR, Troendle CA (1981) The relationship of leaf area and foliage biomass to sapwood conducting area in four subalpine forest tree species. For Sci 27(3):477–482. https://doi.org/10.1093/forestscience/27.3.477

    Article  Google Scholar 

  • Keller R, Thiercelin F (1984) L’élagage des plantations d’épicéa commun et de Douglas [Pruning of Norway spruce and Douglas fir plantations]. Rev For Fr 24(4):289–302

    Article  Google Scholar 

  • Konica-Minolta Inc (2007) Chroma meter CR-400/410. Instruction manual, Osaka

    Google Scholar 

  • Köstner B, Falge E, Tenhunen JD (2002) Age-related effects on leaf area/sapwood area relationship, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany. Tree Physiol 22:567–574

    Article  PubMed  Google Scholar 

  • Kraft G (1884) Beiträge zur Lehre von den Durchforstungen, Schlagstellungen und Lichtungshieben [Contributions to the theory of thinnings, distance between trees and natural regeneration of stands]. Klindworth’s Verlag, Hannover

    Google Scholar 

  • Krajnc L, Harte AM, Farrelly N (2019) The influence of crown and stem characteristics on timber quality in softwoods. For Ecol Manag 435:8–17

    Article  Google Scholar 

  • Krzysik F (1968) Probleme der Klangholzsortierung und Klangholzverwendung [Problems of resonance wood grading and use]. Holzindustrie 1:3–7

    Google Scholar 

  • Kuuluvainen T (1988) Crown architecture and stemwood production in Norway spruce (Picea abies (L.) Karst.). Tree Physiol 4(4):337–346

    Article  CAS  PubMed  Google Scholar 

  • Larson PR, Kretschmann DE, Clark A, Isebrands JG (2001) Formation and properties of juvenile wood in southern pines: A synopsis. FPL-GTR-129. USDA Forest Service, Madison

  • Legg M, Bradley S (2016) Measurement of stiffness of standing trees and felled logs using acoustics: a review. J Acoust Soc Am 139:588–604. https://doi.org/10.1121/1.4940210

    Article  PubMed  Google Scholar 

  • Lepistö M (1985) The inheritance of pendula spruce and utilization of narrow-crowned type in spruce breeding. Found For Tree Breed Inf 1:1–6 (in Finnish)

    Google Scholar 

  • McDowell N, Barnard H, Bond BJ, Hinckley T, Hubbard RM, Ishii H, Köstner B, Magnani F, Marshell JD, Meinzer FC, Phillips N, Ryan MG, Whitehead D (2002) The relationship between tree height and leaf area: sapwood area ratio. Oecologia 132(1):12–20

    Article  CAS  PubMed  Google Scholar 

  • Mencuccini M, Grace J, Fioravanti M (1997) Biomechanical and hydraulic determinants of tree structure in Scots pine: anatomical characteristics. Tree Physiol 17(2):105–113. https://doi.org/10.1093/treephys/17.2.105

    Article  CAS  PubMed  Google Scholar 

  • Meyer HG (1995) A practical approach to the choice of tone wood for the instruments of the violin family. Catgut Acoust Soc J 2(7):9–13

    Google Scholar 

  • Mihai G (2002) Studies on Norway spruce provenances (Picea abies (L.) Karst.) in multi-site comparative trails. PhD Thesis, Transilvania University of Brașov (in Romanian)

  • Niţu C, Răiescu V, Creangă I (1984) Cercetări privind comportarea provenienţelor de molid testate în diferite condiţii staţionale [Research concerning the behaviour of Norway spruce provenances tested in different site conditions]. Forest Research and Management Institute, Bucharest

    Google Scholar 

  • Ono T, Norimoto M (1984) On physical criteria for the selection of wood for soundboards of musical instruments. Rheol Acta 23(6):652–656

    Article  Google Scholar 

  • Oren R, Werk KS, Schulze ED (1986) Relationship between foliage and conducting xylem in Picea abies (L.) Karst. Trees 1:61–69

    Article  Google Scholar 

  • Øvrum A (2013) In-forest assessment of timber stiffness in Norway spruce (Picea abies (L.) Karst.). Eur J Wood Wood Prod 71:429–435

    Article  CAS  Google Scholar 

  • Pârnuţă G (1991) Selecţia ideotipurilor de molid cu coroană îngustă şi rezistente la rupturi de zăpadă [The selection of narrow-crowned and snow damage resistant Norway spruce ideotypes]. Revista Pădurilor 106(3):123–128

    Google Scholar 

  • Pârnuţă G (1993) Cercetări privind ideotipuri de molid cu coroană îngustă [Research concerning narrow-crowned Norway spruce ideotype]. Revista Pădurilor 108(2):15–20

    Google Scholar 

  • Pârnuţă G (2003) Research concerning narrow-crowned spruce ideotype (Picea abies f. pendula (Lawson) Sylven) in Romania. Ann For Res 46(1):109–122

    Google Scholar 

  • Pașcovici N (1930a) Molidul ca lemn de rezonanță și claviatură. I: Molidul de rezonanță în pădure [The spruce as resonance and keyboard wood. I The resonance spruce in the forest]. Revista Pădurilor 46(2):85–99

    Google Scholar 

  • Pașcovici N (1930b) Molidul ca lemn de rezonanță și claviatură. II: Condițiunile staționale ale lemnului de rezonanță [The spruce as resonance and keyboard wood. II—The forest site conditions for the resonance spruce]. Revista Pădurilor 46(4):279–305

    Google Scholar 

  • Piccioli L (1918) Il legno di risonnanza. Ace Georg A 96:79–102

    Google Scholar 

  • Pilcher JR (1990) Sample preparation, cross-dating and measurement. In: Cook ER, Kairiukstis LA (eds) Methods of dendrocronology. Kluwer Academis Publishers, Dordrecht, pp 40–51

    Google Scholar 

  • Piussi P (2002) Aspetti ecologici della foresta di Paneveggio [Ecological aspects of the forest of Paneveggio]. In: Atti del Convegno Predazzo 10, 11 Settembre 1998 e ulteriori contributi. Ufficio Forestale Domaniali di Cavalese e Primiero, pp 131–142

  • Pöikkö VT, Pulkkinen PO (1990) Characteristics of normal-crowned and pendula spruce (Picea abies (L.) Karst.) examined with reference to the definition of a crop ideotype. Tree Physiol 7(1–4):201–207

    Article  Google Scholar 

  • Pravdin LF (1975) Norway spruce and Siberian spruce in USSR. Nauka

  • Proto AR, Macrì G, Bernardini V, Russo D, Zimbalatti G (2017) Acoustic evaluation of wood quality with a non-destructive method in standing trees: a first survey in Italy. iForest 10(4):700–706

    Article  Google Scholar 

  • Przybylski T (2007) Morphology. In: Tjoelker MG, Boratyński A, Bugała W (eds) Biology and ecology of Norway spruce. Springer, Dordrecht, pp 9–14

    Chapter  Google Scholar 

  • Pulkkinen P (1991a) Crown form and harvest increment in pendulous Norway spruce. Silva Fenn 25(4):207–214

    Article  Google Scholar 

  • Pulkkinen P (1991b) Crown structure and partitioning of abovegroung biomass before the competition phase in a mixed stand of normal-crowned Norway spruce (Picea abies (L.) Karst.) and pendulous Norway spruce (Picea abies f.pendula (Lawson) Sylven). Tree Physiol 8:361–370

    Article  Google Scholar 

  • Radu RG, Curtu AL, Spârchez G, Şofletea N (2014) Genetic diversity of Norway spruce [Picea abies (L.) Karst.] in Romanian Carpahians. Ann For Res 57(1):19–29

    Google Scholar 

  • Richter C (2016) The principles of wood characteristic formation. In: Pancel L, Köhl M (eds) Tropical forestry handbook. Springer, Berlin, pp 2761–2783

    Chapter  Google Scholar 

  • Roohnia M, Tajdini A, Manouchehri N (2011) Assesing wood in sounding boards considering the ratio of acoustical anisotropy. NDT&E Int 44(1):13–20. https://doi.org/10.1016/j.ndteint.2010.09.001

    Article  Google Scholar 

  • Rosner S, Klein A, Müller U, Karlsson B (2008) Tradeoffs between hydraulic and mechanical stress responses of mature Norway spruce trunk wood. Tree Physiol 28(8):1179–1188

    Article  PubMed  PubMed Central  Google Scholar 

  • Schelleng JC (1982) Wood for violins. Catgut Acoust Soc Newsl 37:8–19

    Google Scholar 

  • Schmidt-Vogt H (1972) Studien zur morphologischen Variabilität der Fichte (Picea abies (L.) Karst.). Allg. Forst- u. J.-Ztg. 143(7, 9, 11):133–144, 177–186, 221–240 (in German)

  • Silvestru-Grigore CV, Dinulică F, Spârchez G, Hălălișan AF, Dincă LC, Enescu RE, Crișan VE (2018) Radial growth behavior of pines on Romanian degraded lands. Forests 9(4):213. https://doi.org/10.3390/f9040213

    Article  Google Scholar 

  • Simic K, Gendvilas V, O’Reilly C, Harte AM (2019) Predicting structural timber grade-determining properties using acoustic and density measurements on young Sitka spruce trees and logs. Holzforschung 73(2):139–149. https://doi.org/10.1515/hf-2018-0073

    Article  CAS  Google Scholar 

  • Singleton R, DeBell DS, Marshall DD, Gartner BL (2003) Eccentricity and fluting in young-growth western hemlock in Oregon. West J Appl For 18(4):221–228

    Article  Google Scholar 

  • Sonderegger W, Alter P, Niemz P (2008) Untersuchungen zu ausgewählten Eigenschaften von Fichtenklangholz aus Graubünden [Studies on selected properties of spruce resonant wood from Graubünden]. Eur J Wood Wood Prod 66(5):345–354. https://doi.org/10.1007/s00107-008-0273-1

    Article  CAS  Google Scholar 

  • Spycher M, Schwarze FWMR, Steiger R (2008) Assesment of resonance wood quality by comparing its physical and histological properties. Wood Sci Technol 42(4):325–342. https://doi.org/10.1007/s00226-007-0170-5

    Article  CAS  Google Scholar 

  • Stanciu MD, Bucur V, Munteanu MV, Georgescu SV, Năstac SM (2019a) Moisture induced deformation in the neck of a classical guitar. Holzforschung 73(4):371–379. https://doi.org/10.1515/hf-2018-0021

    Article  CAS  Google Scholar 

  • Stanciu MD, Vlase S, Marin M (2019b) Vibration analysis of a guitar considered as a symmetrical mechanical system. Symmetry 11(6):727. https://doi.org/10.3390/sym11060727

    Article  Google Scholar 

  • Stanciu MD, Coșereanu C, Dinulică F, Bucur V (2020) Effect of wood species on vibration modes of violins plates. Eur J Wood Wood Prod 78:785–799. https://doi.org/10.1007/s00107-020-01538-5

    Article  CAS  Google Scholar 

  • Stănescu V, Şofletea N (1992) Cercetări de genetică ecologică în molidişuri montane: iI [Research of ecological genetics in mountain Norway spruce forests: II]. Revista Pădurilor 107(1):2–51

    Google Scholar 

  • Stănescu V, Şofletea N, Popescu O (1997) Circumstanţe fenotipice interesând genomul molidului [Phenotypic circumstances concerning Norway spruce genome]. Revista de Silvicultură şi Cinegetică 2(2):3–5

    Google Scholar 

  • StatSoft, Inc. (2007) Statistica (data analysis software system), version 8.0

  • Ștefănescu P (1961) O stațiune de molid cu lemn de rezonanță în munții Gurghiu, din raza Ocolului silvic Sovata [A Norway spruce forest site in Gurghiu mountains containing resonance wood, located in the range of Sovata Forest district]. Revista Pădurilor 76(2):85–92

    Google Scholar 

  • Timell TE (1986) Compression wood in Gymnosperms. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Ujvari E, Ujvari F (2006) Adaptation of progenies of a Norway spruce provenance test (IUFRO 1964/68) to a local environment. Acta Silvatica Liggnignaria Hungarica 2:47–56

    Google Scholar 

  • Uzielli L (2002) Legno di risonanza con indanture [Resonance wood with indented rings]. In: Atti del Convegno Predazzo 10, 11 Settembre 1998 e ulteriori contributi. Ufficio Forestale Domaniali di Cavalese e Primiero, pp 39-40

  • Wang X, Ross RJ (2008) Acoustic evaluation of Alaskan young growth wood. In: Proc 15th Intern Symposium of Non-destructive testing of wood. Duluth, pp 97–187

  • Wang X, Carter P, Ross RJ, Brashaw BK (2007) Acoustic assessment of wood quality of raw forest materials: a path to increased profitability. For Prod J 57:6–14

    Google Scholar 

  • Wegst UGK (2006) Wood for sound. Am J Bot 93(10):1439–1448

    Article  PubMed  Google Scholar 

  • Weisgerber H (1979) Norway spruce provenance experiments in Central Europe. IUFRO Norway spruce Meeting S2.03.11-S2.02.11, Bucharest, pp 57–74

  • Wessels CB, Malan FS, Rypstra T (2011) A review of measurement methods used on standing trees for the prediction of some mechanical properties of timber. Eur J For Res 130:881–893

    Article  Google Scholar 

  • Whitehead D, Edwards WRN, Jarvis PG (1984) Conducting sapwood area, foliage area, and permeability in mature trees of Picea sitchensis and Pinus contorta. Can J For Res 14(6):940–947

    Article  Google Scholar 

  • WinDENDRO (2007) WinDENDROTM 2006 for tree-ring analysis. Manual of exploitation. Régent Instruments Inc., Québec

  • Zar JH (1974) Biostatistical analysis. Prentice-Hall Inc., Englewood Cliffs

    Google Scholar 

  • Zeltiņš P, Katrevičs J, Gailis A, Maaten T, Desaine I, Jansons Ā (2019) Adaptation capacity of Norway spruce provenances in Western Latvia. Forests 10(10):840. https://doi.org/10.3390/f10100840

    Article  Google Scholar 

  • Zlei G (2007) Elemente auxologice specifice arborilor de molid cu lemn de rezonanță din Ocolul Silvic Tomnatic [Growth specific characteristics of resonance wood Norway spruce in the Tomnatic forest district]. Revista Pădurilor 122(1):23–27

    Google Scholar 

  • Zubizareta Gerendiain A, Peltola H, Pulkkinen P, Ikonen VP, Jaatinen R (2008) Differences in growth and wood properties between narrow and normal crowned types of Norway spruce grown at narrow spacing in Southern Finland. Silva Fenn 42(3):423–437

    Article  Google Scholar 

  • Zubizareta Gerendiain A, Peltola H, Pulkkinen P (2009) Growth and wood property traits in narrow crowned Norway spruce (Picea abies f. pendula) clones grown in Southern Finland. Silva Fenn 43(3):369–382

    Article  Google Scholar 

  • Zugliani G, Dotta L (2009a) Legno di risonanza. Caratteristiche techniche e conizioni ecologiche [Resonance wood. Technical features and ecological conditions]. Sherwood 154:7–13

    Google Scholar 

  • Zugliani G, Dotta L (2009b) Legno di risonanza. Gestione, selezione e lavorazione nella Foresta Demaniale di Paneveggio (TN) [Resonance wood. Management, selection and manufacture in the state forest of Paneveggio]. Sherwood 155:14–18

    Google Scholar 

Download references

Acknowledgements

The authors thank Eng. Andrei Gheorghe and Mr. Eusebiu Roșca for their support in data collection. We are grateful as well to Dr. Alexandra Stan and Dr. Grahame Smith for their contribution in English editing.

Funding

The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

FD, VB: conceptualization, FD, C-TA: methodology, FD: software, C-TA, FD, MMV: data curation, FD, ALC, N-VN: original draft preparation, FD, VB: review and editing, FD, VB, MMV: supervision.

Corresponding author

Correspondence to Maria Magdalena Vasilescu.

Ethics declarations

Conflict of interest

None of the authors has any potential conflict of interest related to this manuscript.

Additional information

Communicated by Martina Meincken.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinulică, F., Bucur, V., Albu, CT. et al. Relevant phenotypic descriptors of the resonance Norway spruce standing trees for the acoustical quality of wood for musical instruments. Eur J Forest Res 140, 105–125 (2021). https://doi.org/10.1007/s10342-020-01318-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-020-01318-z

Keywords

Navigation