Skip to main content
Log in

Regularity results for nonlocal equations and applications

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We introduce the concept of \(C^{m,\alpha }\)-nonlocal operators, extending the notion of second order elliptic operator in divergence form with \(C^{m,\alpha }\)-coefficients. We then derive the nonlocal analogue of the key existing results for elliptic equations in divergence form, notably the Hölder continuity of the gradient of the solutions in the case of \(C^{0,\alpha }\)-coefficients and the classical Schauder estimates for \(C^{m+1,\alpha }\)-coefficients. We further apply the regularity results for \(C^{m,\alpha }\)-nonlocal operators to derive optimal higher order regularity estimates of Lipschitz graphs with prescribed Nonlocal Mean Curvature. Applications to nonlocal equation on manifolds are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abatangelo, N., Dupaigne, L.: Nonhomogeneous boundary conditions for the spectral fractional Laplacian. Ann. Inst. H. Poincaré Anal. Non Linéaire 34(2), 439–467 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Abatangelo, N., Valdinoci, E.: Getting acquainted with the fractional Laplacian. In: Contemporary Research in Elliptic PDEs and Related Topics, pp. 1–105

  3. Barles, G., Chasseigne, E., Imbert, C.: Hölder continuity of solutions of second-order elliptic integro-differential equations. J. Eur. Math. Soc. 13, 1–26 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Barrios, B., Figalli, A., Valdinoci, E.: Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13, 609–639 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Bass, R., Levin, D.: Harnack inequalities for jump processes. Potent. Anal. 17, 375–388 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Bombieri, E., De Giorgi, E., Miranda, M.: Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche. Arch. Ration. Mech. Anal. 32, 255–267 (1969)

    MathSciNet  MATH  Google Scholar 

  7. Bucur, C., Squassina, M.: Asymptotic mean value properties for fractional anisotropic operators. J. Math. Anal. Appl. 466(1), 107–126 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Cabré, X., Cozzi, M.: A gradient estimate for nonlocal minimal graphs. Duke Math. J. 168(5), 775–848 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Cabré, X., Fall, M.M., Weth, T.: Near-sphere lattices with constant nonlocal mean curvature. Math. Ann. 370(3), 1513–1569 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Caffarelli, L., Chan, C.H., Vasseur, A.: Regularity theory for parabolic nonlinear integral operators. J. Am. Math. Soc 24(3), 849–869 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Caffarelli, L., Roquejoffre, J.-M., Savin, O.: Nonlocal minimal surfaces. Commun. Pure Appl. Math. 63, 1111–1144 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Caffarelli, L., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math. 62, 597–638 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Caffarelli, L., Silvestre, L.: Regularity results for nonlocal equations by approximation. Arch. Rat. Mech. Anal. 200, 59–88 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Caffarelli, L., Silvestre, L.: The Evans–Krylov theorem for nonlocal fully nonlinear equations. Ann. Math. 174, 1163–1187 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Caffarelli, L., Souganidis, P.E.: Convergence of nonlocal threshold dynamics approximations to front propagation. Arch. Ration. Mech. Anal. 195, 1–23 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Caffarelli, L., Valdinoci, E.: Regularity properties of nonlocal minimal surfaces via limiting arguments. Adv. Math. 248(25), 843–871 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Cozzi, M.: Regularity results and Harnack inequalities for minimizers and solutions of nonlocal problems: a unified approach via fractional De Giorgi classes. J. Funct. Anal. 272(11), 4762–4837 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Dávila, J., del Pino, M., Wei, J.: Nonlocal \(s\)-minimal surfaces and Lawson cones. J. Diff. Geom

  19. De Giorgi, E.: Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. 3(3), 2–43 (1957)

    MATH  Google Scholar 

  20. Di Castro, A., Kuusi, T., Palatucci, G.: Local behavior of fractional \(p\)-minimizers. Ann. Inst. H. Poincaré Anal. Non Linéaire. V 33(5), 1279–1299 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Dipierro, S., Savin, O., Valdinoci, E.: Definition of fractional Laplacian for functions with polynomial growth. Rev. Mat. Iberoam. 35(4), 1079–1122 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Dipierro, S., Savin, O., Valdinoci, E.: Graph properties for nonlocal minimal surfaces. Calc. Var. Partial Differ. Equ. 55(4), Paper No. 86, 25 pp (2016)

  23. Dyda, B., Kassman, M.: Regularity estimates for elliptic nonlocal operators. Anal. PDE 13(2), 317–370 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Fall, M.M.: Constant Nonlocal Mean Curvature surfaces and related problems. In: Proceedings of the International Congress of Mathematicians. 2018 Rio de Janeiro, vol. 1, pp. 21–30 https://doi.org/10.9999/icm2018-v1-p21

  25. Fall, M.M.: Regularity estimates for nonlocal Schrödinger equation. Discrete Contin. Dyn. Syst. 39(3), 1405–1456 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Fall, M.M., Weth, T.: Monotonicity and nonexistence results for some fractional elliptic problems in the half space. Commun. Contemp. Math. 18(1), 1550012 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Felsinger, M., Kassmann, M., Voigt, P.: The Dirichlet problem for nonlocal operators. Math. Z 279(3–4), 779–809 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Fernández-Real, X., Ros-Oton, X.: Regularity theory for general stable operators: parabolic equations. J. Funct. Anal. 272(10), 4165–4221 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Fernández-Real, X., Ros-Oton, X.: Boundary regularity for the fractional heat equation. Rev. Acad. Cienc. Ser. A Math. 110, 49–64 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Figalli, A., Valdinoci, E.: Regularity and Bernstein-type results for nonlocal minimal surfaces. J. Reine Angew. Math. 729, 263–273 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Figalli, A., Fusco, N., Maggi, F., Millot, V., Morini, M.: Isoperimetry and stability properties of balls with respect to nonlocal energies. Commun. Math. Phys. 336, 441–507 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Finn, R.: New estimates for equations of minimal surface type. Arch. Ration. Mech. Anal. 14, 337–375 (1963)

    MathSciNet  MATH  Google Scholar 

  33. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer, Berlin, 2001. xiv+517pp

  34. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Grubb, G.: Fractional Laplacians on domains, a development of Hormander’s theory of \(\mu \)-transmission pseudodifferential operators. Adv. Math. 268, 478–528 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Grubb, G.: Local and nonlocal boundary conditions for \(\mu \)-transmission and fractional elliptic pseudodifferential operators. Anal. PDE 7, 1649–1682 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Jin, T., Xiong, J.: Schauder estimates for nonlocal fully nonlinear equations. Ann. Inst. H. Poincaré Anal. Non-Linéaire 33(5), 1375–1407 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Johnson, W.P.: The curious history of Faá di Bruno’s formula. Am. Math. Mon. 109, 217–227 (2002)

    MATH  Google Scholar 

  39. Kassmann, M.: A priori estimates for integro-differential operators with measurable kernels. Calc. Var. Partial Differ. Equ. 34, 1–21 (2009)

    MathSciNet  MATH  Google Scholar 

  40. Kassmann, M., Mimica, A.: Intrinsic scaling properties for nonlocal operators. J. Eur. Math. Soc. (JEMS) 19(4), 983–1011 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Kassmann, M., Rang, M., Schwab, R.W.: Integro-differential equations with nonlinear directional dependence. Indiana Univ. Math. J. 63(5), 1467–1498 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Kassmann, M., Schwab, R.W.: Regularity results for nonlocal parabolic equations. Riv. Math. Univ. Parma (N.S.) 5(1), 183–212 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Kriventsov, D.: \(C^{1,\alpha }\) interior regularity for nonlinear nonlocal elliptic equations with rough kernels. Commun. Partial Differ. Equ. 38(12), 2081–2106 (2013)

    MathSciNet  MATH  Google Scholar 

  44. Kuusi, T., Mingione, G., Sire, Y.: nonlocal equations with measure data. Commun. Math. Phys. 337(3), 1317–1368 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Mingione, G.: Gradient potential estimates. J. Eur. Math. Soc. 13, 459–486 (2011)

    MathSciNet  MATH  Google Scholar 

  46. Mosconi, S.: Optimal elliptic regularity: a comparison between local and nonlocal equations. Discrete Contin. Dyn. Syst. 11(3), 547–559 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Mou, C., Yi, Y.: Interior regularity for regional fractional Laplacian. Commun. Math. Phys. 340, 233 (2015)

    MathSciNet  MATH  Google Scholar 

  48. Ros-Oton, X., Serra, J.: Regularity theory for general stable operators. J. Differ. Equ. 260, 8675–8715 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Ros-Oton, X., Serra, J.: Boundary regularity for fully nonlinear integro-differential equations. Duke Math. J. 165(11), 2079–2154 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Schwab, R.W., Silvestre, L.: Regularity for parabolic integro-differential equations with very irregular kernels. Anal. PDE 9(3), 727–772 (2016)

    MathSciNet  MATH  Google Scholar 

  51. Serra, J.: \(C^{\sigma +\alpha }\) regularity for concave nonlocal fully nonlinear elliptic equations with rough kernels. Calc. Var. Partial Differ. Equ. 54, 3571–3601 (2015)

    MathSciNet  MATH  Google Scholar 

  52. Serra, J.: Regularity for fully nonlinear nonlocal parabolic equations with rough kernels. Calc. Var. Partial Differ. Equ. 54(1), 615–629 (2015)

    MathSciNet  MATH  Google Scholar 

  53. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60, 67–112 (2007)

    MathSciNet  MATH  Google Scholar 

  54. Silvestre, L.: Hölder estimates for solutions of integro-differential equations like the fractional Laplace. Indiana Univ. Math. J. 55(3), 1155–1174 (2006)

    MathSciNet  MATH  Google Scholar 

  55. Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  56. Teixeira, E.V.: Sharp regularity for general Poisson equations with borderline sources. J. Math. Pures Appl. (9) 99(2), 150–164 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouhamed Moustapha Fall.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author’s work is supported by the Alexander von Humboldt foundation. He thanks Joaquim Serra, for his interest in this work and with whom he had stimulating discussions that help to improve the first section of this paper. He also thanks the anonymous referee for useful comments.

Appendix

Appendix

Proof of Lemma 5.1

Case \(2s+\alpha <2\). For simplicity, recalling (1.25) and (1.26), we assume that

$$\begin{aligned} \Vert A\Vert _{C^{k+2s+\alpha }(Q_\infty )\times L^\infty (S^{N-1} )}+ \Vert B\Vert _{{{\mathcal {C}}}^{k}_{\tau _s}(Q_\infty )\times L^\infty (S^{N-1} )} \le 1, \end{aligned}$$

where \(\tau _s:=\alpha +(2s-1)_+\) if \(2s\not =1\) and \(\tau _{1/2}:=\alpha + \varepsilon \) if \(2s=1\). We also assume that

$$\begin{aligned} \Vert u\Vert _{C^{k+2s+\alpha +\varepsilon _s}({\mathbb {R}}^N )}\le 1, \end{aligned}$$

where \(\varepsilon _s:=0\) if \(2s\not =1\) and \(\varepsilon _s:=\varepsilon \) if \(2s=1\).

We consider the case \(m=0\). Since \(\Vert u\Vert _{L^\infty ({\mathbb {R}}^N)}\le 1\), we have

$$\begin{aligned} |\delta ^e u(x,r,\theta )| \le C \min (1,r^{2s+\alpha }). \end{aligned}$$
(7.1)

Here, for \(2s\ge 1\), we use the fact that \( 2 \delta ^e u(x,r)=r \int _0^1(\nabla u(x+t r \theta )-\nabla u(x-t r \theta ))\cdot \theta \, dt \). Moreover for \(x_1,x_2\in {\mathbb {R}}^N\) and \(r>0\), then for \(2s+\alpha <1\), we have

$$\begin{aligned} |\delta ^e u(x_1,r,\theta )-\delta ^e u(x_2,r,\theta )| \le C \min (r^{2s+\alpha }, |x_1-x_2|^{2s+\alpha }) \end{aligned}$$
(7.2)

and if \(2s\ge 1\), we have

$$\begin{aligned} |\delta ^e u(x_1,r,\theta )-\delta ^e u(x_2,r,\theta )| \le C \min (r^{2s+\alpha }, r |x_1-x_2|^{\tau _s}). \end{aligned}$$
(7.3)

On the other hand, for all \(s\in (0,1)\),

$$\begin{aligned} |\delta ^o u(x,r,\theta ) | \le C \min (1,r )^{\min (2s+\alpha ,1)}, \end{aligned}$$
(7.4)

and

$$\begin{aligned} |\delta ^o u(x_1,r,\theta )-\delta ^o u(x_2,r,\theta )| \le C \min (r, |x_1-x_2| )^{\min (2s+\alpha ,1)}. \end{aligned}$$
(7.5)

Using (7.4), for \(s\in (0,1)\), we estimate

$$\begin{aligned} |{{\mathcal {O}}}^s_{B,u}(x)|&\le C \int _0^\infty \min (r,1)^{\min (2s+\alpha ,1)} \min (r, 1)^{(2s-1)_++\alpha } r^{-1-2s}\, dr\\&\le C\int _0^1r^{\min (2s+\alpha ,1)} r ^{(2s-1)_++\alpha } r^{-1-2s}\, dr+ C \int _1^\infty r^{-1-2s}\, dr, \end{aligned}$$

so that,

$$\begin{aligned} \Vert {{\mathcal {O}}}^s_{B,u}\Vert _{L^\infty ({\mathbb {R}}^N)}\le C. \end{aligned}$$
(7.6)

We consider next \({{\mathcal {E}}}^s_{A,u}\). For all \(x\in {\mathbb {R}}^N\) and for all \(s\in (0,1)\), by (7.1), we have

$$\begin{aligned} |{{\mathcal {E}}}^s_{A,u}(x)|&\le C \int _0^\infty \min ( r^{2s+\alpha } ,1) r^{-1-2s}\, dr \le C \int _0^1r^{\alpha -1} \, dr+ C \int _1^\infty r^{-1-2s}\, dr, \end{aligned}$$

yielding

$$\begin{aligned} \Vert {{\mathcal {E}}}^s_{A,u}\Vert _{L^\infty ({\mathbb {R}}^N)}\le C. \end{aligned}$$
(7.7)

Let \(x_1, x_2\in {\mathbb {R}}^N\) with \(|x_1-x_2|\le 1\). Using (7.5), for \(s\in (0,1)\) we have

$$\begin{aligned} |{{\mathcal {O}}}^s_{B,u}(x_1)&-{{\mathcal {O}}}^s_{B,u}(x_2)|\le C \int _0^\infty \min (r,|x_1-x_2|)^{\min (2s+\alpha ,1)} \min (r, 1)^{\tau _s} r^{-1-2s}\, dr\\&+C \int _0^\infty \min (r,1)^{\min (2s+\alpha ,1)} \min (r, |x_1-x_2|)^{\tau _s} r^{-1-2s}\, dr\\&\le C\int _0^{|x_1-x_2|}r^{\min (2s+\alpha ,1)+\tau _s} r^{-1-2s}\, dr +C|x_1-x_2|^{\min (2s+\alpha ,1) } \int _{|x_1-x_2|}^1 r^{\tau _s -1-2s } \, dr\\&+C|x_1-x_2|^{\tau _s } \int _{|x_1-x_2|}^1 r^{\min (2s+\alpha ,1)-1-2s } \, dr\\&+C |x_1-x_2|^{\min (2s+\alpha ,1) } \int _{1}^\infty r^{-1-2s}\, dr+C |x_1-x_2|^{ \tau _s } \int _{1}^\infty r^{-1-2s}\, dr\\&\le C |x_1-x_2|^{\alpha } . \end{aligned}$$

In the above estimate, it is used that \(\tau _{s}=\alpha +\varepsilon \), for \(s=1/2\).

This together with (7.6) imply that \(\Vert {{\mathcal {O}}}^s_{B,u}\Vert _{C^{0,\alpha }({\mathbb {R}}^N)}\le C \), for all \(s\in (0,1)\).

Now for \(2s\ge 1\), let \(x_1 \not = x_2\in {\mathbb {R}}^N\) with \(|x_1-x_2|\le 1\). Using (7.3) and (7.1) we have

$$\begin{aligned}&|{{\mathcal {E}}}^s_{A,u}(x_1)-{{\mathcal {E}}}^s_{A,u}(x_2)|\\&\le C \int _0^\infty \min (r^{ 2s+\alpha } , r|x_1-x_2|^{ \tau _s} ) r^{-1-2s }\, dr +C |x_1-x_2|^{\alpha } \int _0^\infty \min (r ^{ 2s+\alpha },1 ) r^{-1-2s}\, dr\\&\le C \int _0^{|x_1-x_2|} r^{\alpha -1}\, dr+C|x_1-x_2|^{\tau _s}\int _{|x_1-x_2|}^\infty r^{-2s}\, dr +C |x_1-x_2|^{\alpha } \le C |x_1-x_2|^\alpha . \end{aligned}$$

Hence using (7.7), for \(2s\ge 1\), we get \(\Vert {{\mathcal {E}}}^s_{A,u}\Vert _{C^{0,\alpha }({\mathbb {R}}^N)}\le C \).

We now consider the case \(2s+\alpha < 1\). For \(x_1, x_2\in {\mathbb {R}}^N\), \(|x_1-x_2|\le 1\), by (7.2), we estimate

$$\begin{aligned}&|{{\mathcal {E}}}^s_{A,u}(x_1)-{{\mathcal {E}}}^s_{A,u}(x_2)|\\&\le C\int _0^\infty \min (r,|x_1-x_2|)^{ 2s+\alpha } r^{-1-2s}\, dr +C|x_1-x_2|^{\alpha } \int _0^\infty \min (r ^{ 2s+\alpha },1 ) r^{-1-2s}\, dr\\&\le C \int _0^{|x_1-x_2|}r^{-1+\alpha } \, dr+C|x_1-x_2|^{2s+\alpha }\int _{|x_1-x_2|}^\infty r^{-1-2s}\, dr+C |x_1-x_2|^{\alpha } \le C |x_1-x_2|^\alpha . \end{aligned}$$

We then conclude from this and (7.7) that \(\Vert {{\mathcal {E}}}^s_{A,u}\Vert _{C^{0,\alpha }({\mathbb {R}}^N)}\le C \), provided \(2s+\alpha <1\).

If \(m>1\), we can use the Leibniz formula for the derivatives of the product of two functions. Note that for all \(\gamma \in {\mathbb {N}}^N\) with \(|\gamma |\le m\), we have that \(\delta ^e \partial ^\gamma u\) (resp. \(\delta ^o \partial ^\gamma u\)) satisfies (7.1) and (7.2) (resp. (7.4) and (7.5)).

Case \(2s+\alpha >2\). We first observe from the arguments in the previous case that

$$\begin{aligned} \Vert {{\mathcal {E}}}_{A,u}^s\Vert _{L^{\infty }({\mathbb {R}}^N)}\le C \Vert A\Vert _{C^{0}(Q_\infty ) \times L^\infty (S^{N-1} )} \Vert u\Vert _{C^{2s+\alpha }({\mathbb {R}}^N)},\nonumber \\ \Vert {{\mathcal {O}}}_{B,u}^s\Vert _{L^{\infty }({\mathbb {R}}^N)} \le C \Vert A\Vert _{{{\mathcal {C}}}^{0}_{1}(Q_\infty )\times L^\infty (S^{N-1} )} \Vert u\Vert _{C^{2s+\alpha }({\mathbb {R}}^N)} . \end{aligned}$$
(7.8)

Since \(B(y,0,\theta ) =0\), we have

$$\begin{aligned} B(x_1,r,\theta ) - B(x_2,r,\theta )= r\int _0^1 (D_rB(x_1,\varrho r,\theta ) - D_r B(x_2,\varrho r,\theta )) \, d\varrho . \end{aligned}$$

On the other hand

$$\begin{aligned} B(x_1,r,\theta ) - B(x_2,r,\theta )= \int _0^1 D_x B(\varrho x_1+(1-\varrho ) x_2, r,\theta )\cdot (x_1-x_2) \, d\varrho . \end{aligned}$$

The above two estimates yield

$$\begin{aligned}&|B(x_1,r,\theta ) - B(x_2,r,\theta )|\le ( \Vert B\Vert _{C^{2s+\alpha -1}(Q_\infty )\times L^\infty (S^{N-1} )} \nonumber \\&\quad + \Vert B\Vert _{{{\mathcal {C}}}^1_{2s+\alpha -2} (Q_\infty ) \times L^\infty (S^{N-1} )} ) \min (r|x_1-x_2|^{2s+\alpha -2}, r^{2s+\alpha -2} |x_1-x_2| ). \end{aligned}$$
(7.9)

In addition, we have

$$\begin{aligned} \delta ^o u(x_1,r,\theta ) - \delta ^o u(x_2,r,\theta ) = \int _0^1 D_x \delta ^ou(\varrho x_1+(1-\varrho ) x_2, r,\theta )\cdot (x_1-x_2) d\varrho , \end{aligned}$$

so that

$$\begin{aligned} | \delta ^o u(x_1,r,\theta ) - \delta ^o u(x_2,r,\theta ) ) | \le C \Vert u\Vert _{C^{2s+\alpha }({\mathbb {R}}^N)} \min (r, r^{2s+\alpha -2} |x_1-x_2|). \end{aligned}$$

Using this and (7.9), we find that, for all \(x_1,x_2\in {\mathbb {R}}^N\),

$$\begin{aligned}&|{{\mathcal {O}}}_{B,u}^s(x_1)- {{\mathcal {O}}}_{B,u}^s(x_2)| \le C ( \Vert B\Vert _{C^{2s+\alpha -1}(Q_\infty )\times L^\infty (S^{N-1} )}\nonumber \\&\quad + \Vert B\Vert _{{{\mathcal {C}}}^1_{2s+\alpha -2} (Q_\infty ) \times L^\infty (S^{N-1} )} ) |x_1-x_2|^\alpha . \end{aligned}$$
(7.10)

Next, we write \(2 \delta ^e u(x,r)=r \int _0^1(\nabla u(x+t r \theta )-\nabla u(x-t r \theta ))\cdot \theta \, dt\) from which we deduce that

$$\begin{aligned} \delta ^e u(x,r)&= r^2 \int _0^1 t \int _0^1 D^2_x \delta ^o u(x, \varrho t r, \theta ) [\theta ,\theta ] \, d\varrho dt \end{aligned}$$

and

$$\begin{aligned} \delta ^e u(x_1,r)- \delta ^e u(x_2,r)&=r \int _0^1 \int _0^1D^2_x \delta ^o u( \varrho x_1+ (1-\varrho ) x_2,t r, \theta )[x_1-x_2,\theta ] \, dt d\varrho . \end{aligned}$$

By combining the above two estimates, we get

$$\begin{aligned} | \delta ^e u(x_1,r)- \delta ^e u(x_2,r)| \le C \Vert u\Vert _{C^{2s+\alpha }({\mathbb {R}}^N)} \min (r^{2s+\alpha }, r^{2s+\alpha -1} |x_1-x_2| ). \end{aligned}$$

Using now the above estimate and the fact that \(A\in {C^{\alpha }(Q_\infty ) \times L^\infty (S^{N-1} )}\), we immediately deduce that \([{{\mathcal {E}}}_{A,u}^s]_{C^\alpha ({\mathbb {R}}^N)}\le C \Vert A\Vert _{C^{\alpha }(Q_\infty )\times L^\infty (S^{N-1} )} \Vert u\Vert _{C^{2s+\alpha }({\mathbb {R}}^N)} \). From this, (7.8) and (7.10), we get the statement in the lemma for \(m=0\) and \(2s+\alpha >2\). In the general case that \(m\ge 1\), we can use the Leibniz formula for the derivatives of the product of two functions and argue as above to get the desired estimates. \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fall, M.M. Regularity results for nonlocal equations and applications. Calc. Var. 59, 181 (2020). https://doi.org/10.1007/s00526-020-01821-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01821-6

Mathematics Subject Classification

Navigation