Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Electrochemically Exfoliated Graphene/Manganese Dioxide Nanowire Composites as Electrode Materials for Flexible Supercapacitors

Xinfeng Guo A D , Xinling Yu B C D , Lidong Sun B C E , Liqing Chen B , Cui Liu B , Shudong Zhang B , Zhenyang Wang B , Lanli Chen A and Nian Li https://orcid.org/0000-0002-1267-629X B E
+ Author Affiliations
- Author Affiliations

A School of Electronic and Electrical Engineering, Nanyang Institute of Technology, Nanyang, Henan 473004, China.

B Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China.

C Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230031, China.

D These authors contributed equally to this work.

E Corresponding authors. Email: sld@mail.ustc.edu.cn; linian@issp.ac.cn

Australian Journal of Chemistry 74(3) 192-198 https://doi.org/10.1071/CH20215
Submitted: 5 July 2020  Accepted: 12 August 2020   Published: 22 September 2020

Abstract

Flexible supercapacitors are of great significance for the development of intelligent electronic products and wearable devices. Herein, through reasonable design, self-supporting flexible film composites that can be used as supercapacitor electrodes, are synthesised by vacuum filtration. The composites are composed of electrochemically exfoliated graphene nanosheets and MnO2 nanowires, in which the graphene nanosheets mainly play the role of skeleton support, enhance conductivity, and provide electric double-layer capacitance, while the MnO2 nanowires mainly provide pseudocapacitance. Results show that the sample with 20 % MnO2 possesses the best electrochemical performance due to the mass ratio which can give full play to the pseudocapacitive properties of MnO2 and the conductivity of graphene. The maximum mass specific capacitance reaches 106.2 F g−1 at 0.5 A g−1, and the areal specific capacitance is 767.0 mF cm−2 at 1 mA cm−2. The electrode also maintains 86.7 % of the initial capacitance after 10000 cycles, indicating good cyclic stability. Furthermore, an asymmetric solid supercapacitor based on flexible thin films is assembled. The energy density is 20.7 W h kg−1, the power density is 1000 W kg−1, and the capacitance remains 84.2 % after 3000 cycles at 5.0 A g−1. These results suggest that the as-prepared self-supporting material has the potential to be used to construct flexible supercapacitors for wearable equipment.


References

[1]  R. Hou, G. S. Gund, K. Qi, P. Nakhanivej, H. Liu, F. Li, B. Y. Xia, H. S. Park, Energy Storage Mater. 2019, 19, 212.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  M. Lukatskaya, B. Dunn, Y. Gogotsi, Nat. Commun. 2016, 7, 12647.
         | Crossref | GoogleScholarGoogle Scholar | 27600869PubMed |

[3]  W. J. Song, S. Lee, G. Song, H. B. Son, D. Y. Han, I. Jeong, Y. Bang, S. Park, Energy Storage Mater. 2020, 30, 260.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  Y. Wang, Q. Yang, Y. Zhao, S. Du, C. Zhi, Adv. Mater. Technol. 2019, 4, 1900083.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  K. Zhang, L. Zhang, X. S. Zhao, J. Wu, Chem. Mater. 2010, 22, 1392.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  K. Ryu, H. Xue, J. Park, J. Chem. Technol. Biotechnol. 2013, 88, 788.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  F. Jiang, J. Zhang, N. Li, C. Liu, Y. Zhou, X. Yu, Z. Wang, J. Chem. Technol. Biotechnol. 2019, 94, 3530.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  G. S. Gund, D. P. Dubal, N. R. Chodankar, J. Y. Cho, P. Gomez-Romero, C. Park, C. D. Lokhande, Sci. Rep. 2015, 5, 12454.
         | Crossref | GoogleScholarGoogle Scholar | 26208144PubMed |

[9]  Q. Zhang, Q. Shi, Y. Yang, Q. Zang, Z. Xiao, X. Zhang, L. Wang, Dalton Trans. 2020, 49, 8162.
         | Crossref | GoogleScholarGoogle Scholar | 32510091PubMed |

[10]  Q. Wang, X. Wang, B. Liu, G. Yu, X. Hou, D. Chen, G. Shen, J. Mater. Chem. A 2013, 1, 2468.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  H. Chen, Y. Ai, F. Liu, X. Chang, Y. Xue, Q. Huang, S. Han, Electrochim. Acta 2016, 213, 55.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  Y. Tian, C. Yang, W. Que, X. Liu, X. Yin, L. Kong, J. Power Sources 2017, 359, 332.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  Y. Xie, X. Fang, Electrochim. Acta 2014, 120, 273.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  K. H. Choi, J. Yoo, C. K. Lee, S. Y. Lee, Energy Environ. Sci. 2016, 9, 2812.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  K. Jost, C. R. Perez, J. K. McDonough, V. Presser, M. Heon, G. Dion, Y. Gogotsi, Energy Environ. Sci. 2011, 4, 5060.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  X. Cai, M. Peng, X. Yu, Y. Fu, D. Zou, J. Mater. Chem. C 2014, 2, 1184.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  N. Liu, W. Ma, J. Tao, X. Zhang, J. Su, L. Li, Y. Bando, Adv. Mater. 2013, 25, 4925.
         | Crossref | GoogleScholarGoogle Scholar | 23893899PubMed |

[18]  G. Xin, Y. Wang, X. Liu, J. Zhang, Y. Wang, J. Huang, J. Zang, Electrochim. Acta 2015, 167, 254.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  S. Wang, C. Sun, Y. Shao, Y. Wu, L. Zhang, X. Hao, Small 2017, 13, 1603330.
         | Crossref | GoogleScholarGoogle Scholar | 28845917PubMed |

[20]  S. Wang, J. Zhu, Y. Shao, W. Li, Y. Wu, L. Zhang, X. Hao, Chem. – Eur. J. 2017, 23, 3438.
         | Crossref | GoogleScholarGoogle Scholar | 28078805PubMed |

[21]  F. Liu, S. Song, D. Xue, H. Zhang, Adv. Mater. 2012, 24, 1089.
         | Crossref | GoogleScholarGoogle Scholar | 22271320PubMed |

[22]  M. Mao, J. Hu, H. Liu, Int. J. Energy Res. 2015, 39, 727.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  W. Liu, H. Li, C. Xu, Y. Khatami, K. Banerjee, Carbon 2011, 49, 4122.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. N. Khlobystov, L. J. Li, ACS Nano 2011, 5, 2332.
         | Crossref | GoogleScholarGoogle Scholar | 21309565PubMed |

[25]  S. Yang, S. Brüller, Z. S. Wu, Z. Liu, K. Parvez, R. Dong, K. Müllen, J. Am. Chem. Soc. 2015, 137, 13927.
         | Crossref | GoogleScholarGoogle Scholar | 26460583PubMed |

[26]  J. Liu, C. K. Poh, D. Zhan, L. Lai, S. H. Lim, L. Wang, J. Lin, Nano Energy 2013, 2, 377.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  H. Wang, H. S. Casalongue, Y. Liang, H. Dai, J. Am. Chem. Soc. 2010, 132, 7472.
         | Crossref | GoogleScholarGoogle Scholar | 20443559PubMed |

[28]  S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, ACS Nano 2010, 4, 2822.
         | Crossref | GoogleScholarGoogle Scholar | 20384318PubMed |

[29]  L. Sun, N. Li, S. Zhang, X. Yu, C. Liu, Y. Zhou, S. Han, W. Wang, Z. Wang, J. Alloys Compd. 2019, 789, 910.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  Y. Zhou, N. Li, L. Sun, X. Yu, C. Liu, L. Yang, S. Zhang, Z. Wang, Nanoscale 2019, 11, 7457.
         | Crossref | GoogleScholarGoogle Scholar | 30941382PubMed |

[31]  Y. T. Liao, V. C. Nguyen, N. Ishiguro, A. P. Young, C. K. Tsung, K. C. W. Wu, Appl. Catal. B 2020, 270, 118805.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  H. Konnerth, B. M. Matsagar, S. S. Chen, M. H. G. Prechtl, F. K. Shieh, K. C. W. Wu, Coord. Chem. Rev. 2020, 416, 213319.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  Y. T. Liao, B. M. Matsagar, K. C. W. Wu, ACS Sustain. Chem. & Eng. 2018, 6, 13628.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  E. Doustkhah, J. J. Lin, S. Rostamnia, C. Len, R. Luque, X. L. Luo, Y. Bando, K. C. W. Wu, J. Kim, Y. Yamauchi, Y. Ide, Chem. – Eur. J. 2019, 25, 1614.
         | Crossref | GoogleScholarGoogle Scholar | 30457683PubMed |

[35]  C. C. Chueh, C. I. Chen, Y. A. Su, H. Konnerth, Y. J. Gu, C. W. Kung, K. C. W. Wu, J. Mater. Chem. A 2019, 7, 17079.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  C. C. Lee, C. I. Chen, Y. T. Liao, K. C. W. Wu, C. C. Chueh, Adv. Sci. 2019, 6, 1801715.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  L. Su, G. Yu, H. Cheng, M. Zhang, X. Sun, Appl. Energy 2015, 153, 94.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  H. Jiang, T. Zhao, J. Ma, C. Yan, C. Li, Chem. Commun. 2011, 47, 1264.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  N. L. W. Septiani, Y. V. Kaneti, K. B. Fathoni, J. Wang, Y. Ide, B. Yuliarto, Nugraha, H. K. Dipojono, A. K. Nanjundan, D. Golberg, Y. Bando, Y. Yamauchi, Nano Energy 2020, 67, 104270.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  Y. Li, J. Henzie, T. Park, J. Wang, C. Young, H. Q. Xie, J. W. Yi, J. Li, M. Kim, J. Kim, Y. Yamauchi, J. Na, Bull. Chem. Soc. Jpn. 2020, 93, 176.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  S. Makino, Y. Yamauchi, W. Sugimoto, J. Power Sources 2013, 227, 153.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  J. Tang, R. R. Salunkhe, H. Zhang, V. Malgras, T. Ahamad, S. M. Alshehri, N. Kobayashi, S. Tominaka, Y. Ide, J. H. Kim, Y. Yamauchi, Sci. Rep. 2016, 6, 30295.
         | Crossref | GoogleScholarGoogle Scholar | 27471193PubMed |

[43]  A. L. Patterson, Phys. Rev. 1939, 56, 978.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  H. Huang, W. Zhang, Y. Fu, X. Wang, Electrochim. Acta 2015, 152, 480.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  A. Ambrosi, M. Pumera, Chem. – Eur. J. 2016, 22, 153.
         | Crossref | GoogleScholarGoogle Scholar | 26441292PubMed |

[46]  Z. Lv, Y. Luo, Y. Tang, J. Wei, Z. Zhu, X. Zhou, D. Qi, Adv. Mater. 2018, 30, 1704531.
         | Crossref | GoogleScholarGoogle Scholar | 30306649PubMed |