Skip to main content
Log in

Ore-Forming Fluids of the Aleksandrovskoe and Davenda Deposits (Eastern Transbaikalia)

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

A study of the composition of fluid inclusions in ore minerals of the Davenda Mo–porphyry deposit and the Aleksandrovskoe sulfide–quartz–gold ore deposit, as well as of fluid inclusions in minerals of igneous rocks, showed that ore-forming fluids inherit the salt and gas composition of magmatic fluids generated during crystallization of ore-bearing rocks of the Amudzhikan–Sretensky Igneous Complex, which formed simultaneously with the Au and Mo mineralization. The gold-bearing sulfide–quartz veins of the Aleksandrovskoe deposit formed with the participation of two types of hydrothermal fluids, differing in the composition of salts and the gas phase: homogeneous Ca–Na chloride fluids with CO2 and heterophasic Na–K–Fe-chloride fluids, which indicates two sources of ore-forming fluids during the formation of Au-mineralization. Na–K–Fe-chloride fluids in terms of salt and gas composition were similar to the ore-forming fluids of the Mo-mineralization of the Davenda deposit. Ore-forming Ca–Na-chloride with CO2 The fluids of the Aleksandrovskoe field are comparable in salt and gas composition with the magmatogenic fluids of quartz diorite porphyries and diorite porphyrites. Ore forming Na–K–Fe carbonate-chloride fluids of the Davenda and Aleksandrovskoe deposits show great similarity in composition to magmatic fluids of granite porphyry and emphasize the genetic identity of Mo mineralization in both deposits. The data obtained confirm the widespread opinion that a genetic relationship exists between gold mineralization and dikes of intermediate and mafic composition, and molybdenum–porphyry mineralization with granite–porphyry of the Amudzhikan–Sretensky Igneous Complex. The real agents of this genetic link are metalliferous magmatogenic fluids, the salt and gas composition of which inherit ore-forming fluids. The formation depth of productive ore mineral assemblages in veins of the Aleksandrovskoe and Davenda deposits is estimated at 7.9–7 and 8–6.3 km, respectively, which is not typical of porphyry deposits, the formation of which is characterized by shallower depths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Abramov, B.N., Kalinin, Yu.A., Borovikov, A.A., Badmatsyrenova, R.A., and Posokhov, V.F., Aleksandrovskoe gold deposit: petrogeochemistry of rocks and ores, sources and age of mineralization, Geodinamika i minerageniya Severnoi i Tsentral’noi Azii: Mater. V Vseross. nauch.-prakt. konf, posvyashch. 45-letiyu Geologicheskogo instituta SO RAN (Geodynamics and Metallogeny of Northern and Central Asia. Proceed. 5th All-Urssian Research–Practical Conference Dedicated to the 45th Anniversay of the Geologocal Institute of the Siberian Branch of the Russian Academy of Sciences) Kislov, E.V, Eds., SO RAN: Ulan-Ude, 2018, pp. 4–6.

  2. Abramov, B.N., Kalinin, Yu.A., Kovalev, K.R., and Posokhov, V.F., Shirokinsky ore cluster (Eastern Transbaikalia): conditions of formation, geochemical features, of rocks and ores, relation of mineralization with magmatism, Izv. Tomsk.Politekhn. Univ. Inzhiniring Geores., 2017, vol. 328, no. 6, pp. 6–17.

    Google Scholar 

  3. Andreeva, O.V., Golovin, V.A., and Kozlova, P.S., Evolution of Mesozoic magmatism and ore-forming metasomatic processes in the Southeastern Transbaikal Region (Russia), Geol. Ore Deposits, 1996, vol. 38, no. 2, pp. 101–113.

    Google Scholar 

  4. Antipin, V.S. Petrology and Geochemistry of Mesozoic Granitoids of the Prishilkinskaya Zone (Eastern Transbaikalia), Extended Abstract of Candidate’s (Geol.-Min.) Dissertation, Irkutsk: IGKh SO RAN SSSR, 1970.

  5. Baker, T., Emplacement depth and carbon dioxide-rich fluid inclusions in intrusion-related gold deposits, Econ. Geol., 2002, vol. 97, pp. 1111–1117.

    Article  Google Scholar 

  6. Bakker, R.J., Fluids: new software package to handle microthermometric data and to calculate isochores, Mem. Geol. Soc., 2001, no. 7, pp. 23–25.

  7. Bakker, R.J., AqSo–NaCl: computer program to calculate P–T–V–x properties in the H2O–NaCl fluid system applied to fluid inclusion research and pore fluid calculation, Comp. Geosci., 2018, vol. 115, pp. 122–133.

    Article  Google Scholar 

  8. Berzina, A.P., Berzina, A.N., Gimon, V.O., Krymskii, R.Sh., Larionov, A.N., Nikolaeva, I.V., and Serov, P.A., The Shakhtama porphyry Mo ore magmatic system (eastern Transbaikalia): age, sources, and genetic features, Russ. Geol. Geophys., 2013, vol. 54, no. 6, pp. 587–605.

    Article  Google Scholar 

  9. Berzina, A.P., Berzina, A.N., Gimon, V.O., Bayanova, T.B., Kiseleva, V.Yu., Krymskii, R.Sh., Lepekhina, E.N., and Palesskii, S.V., The Zhireken porphyry Mo ore-magmatic system (Eastern Transbaikalia): U–Pb age, sources, and geodynamic setting, Russ. Geol. Geophys., 2015, vol. 56, no. 3, pp. 446–465.

    Article  Google Scholar 

  10. Bodnar, R.J. and Vityk, M.O., Interpretation of microthermometric data for NaCl–H2O fluid inclusions, Fluid Inclusions in Minerals: Methods and Applications, De Vivo, B. and Frezzotti, M.L., Eds., Blacksburg: Virginia Polytechnic Inst. State Univ., 1994, pp. 117–131.

  11. Borisenko, A.S., Cryometric analysis of salt composition of solutions of gas–liquid inclusions in minerals, Ispol’zovanie metodov termobarogeokhimii pri poiskakh i izuchenii rudnykh mestorozhdenii (Application of Therobarogeochemical Methods in Prospecting and Study of Ore Deposits), Moscow: Nedra, 1982, pp. 37–47.

    Google Scholar 

  12. Borisenko, A.S., Kholmogorov, A.I., Borovikov, A.A., Shebanin, A.P., and Babich, V.V., Composition and metal potential of ore-forming solutions of the Deputatskoe tin deposit, Yakutia, Geol. Geofiz., 1997, vol. 38, no. 11, pp. 1830–1841.

    Google Scholar 

  13. Borisov, V.A., Spatial distribution of gold and molybdenum mineralization in the Amudzhikan–Davendin ore cluster, Geologiya nekotorykh rudnykh mestorozhdenii Zabaikal’ya (Geology of Some Ore Deposits of Transbaikalia), Vol’fson, F.I, Eds., Chita: Zabaik. Kompleks. Nauchn–Issled. Inst. Min. Geol. SSSR, 1968, pp. 163–175.

  14. Borovikov, A.A., Gushchina, L.V., and Borisenko, A.S., cryometric determination of dissolved iron (II), iron (III), and zinc in fluid inclusions, Geochem. Int., 2002, vol. 2, no. 1, pp. 63–71.

    Google Scholar 

  15. Bower, T.S., The deposition of gold and other metals: pressures-induced fluid immiscibility and associated stable isotope signatures, Geochim. Cosmochim. Acta, 1991, vol. 55, pp. 247–2434.

    Google Scholar 

  16. Brown, P.E., FLINCOR: a microcomputer program for the reduction and investigation of fluid-inclusion data, Am. Mineral., 1989, vol. 74, nos. 11–12, pp. 1390–1393.

    Google Scholar 

  17. Chernyshev, I.V., Prokof’ev, V.Yu., Bortnikov, N.S., Chugaev, A.V., Gol’tsman, Yu.V., Lebedev, V.A., Larionova, Yu.O., and Zorina, L.D., Age of granodiorite porphyry and beresite from the Darasun gold field, Eastern Transbaikal region, Russia, Geol. Ore Deposits, 2014, vol. 56, no. 1, pp. 1–14.

    Article  Google Scholar 

  18. Davis, D.W., Lowenstein, T.K., and Spencer, R.J., Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl–H2O, NaCl–KCl–H2O, NaCl–MgCl2–H2O, NaCl–CaCl2–H2O, Geochim. Cosmochim. Acta, 1990, vol. 54, pp. 591–601.

    Article  Google Scholar 

  19. Dong, G., Morrison, G., and Jaireth, S., Quartz textures in epithermal veins, Queensland; classification, origin and implication, Econ. Geol., 1995, vol. 90, no. 6, pp. 1841–1856.

    Article  Google Scholar 

  20. Driesner, T., The system H2O–NaCl. Part II: correlations for molar volume, enthalpy, and isobaric heat capacity from 0 to 1000°C, 1 to 5000 bar, and 0 to 1 XNaCl, Geochim. Cosmochim Acta, 2007, vol. 71, pp. 4902–4919.

    Article  Google Scholar 

  21. Driesner, T. and Heinrich, C.A., The system H2O–NaCl. Part I: correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000°C, 0 to 5000 bar, and 0 to 1 XNaCl, Geochim. Cosmochim Acta, 2007, vol. 71, pp. 4880–4901.

    Article  Google Scholar 

  22. Fedorchuk, V.Ya. and Lukin, V.L., Ukonik Deposit, Mestorozhdeniya Zabaikal’ya (Transbaikalian Deposits), Laverov, N.P., Eds., Moscow: Geoinformmark, 1995, vol. 1, book 2, pp. 49–55.

  23. Khomich, V.G. and Boriskina, N.G., Advancement of mineragenic regionalization of Eastern Transbaikalia based on geophysical studies, Russ. Geol. Geophys., 2017, vol. 58, no. 7, pp. 822–835.

    Article  Google Scholar 

  24. Klein, E.L. and Fuzikawa, K., Origin of the CO2-only fluid inclusions in the Palaeoproterozoic Carara vein-quartz gold deposit, Ipitinga auriferous district, SE-Guiana shield, Brazil: implications for orogenic gold mineralisation, Ore Geol. Rev., 2010, vol. 37, pp. 31–40.

    Article  Google Scholar 

  25. Koval’, P.V., Regional’nyi geokhimicheskii analiz granitoidov (Regional Geochemical Analysis of Granitoids), Novosibirsk: Inst. Geokhim. im. A.P.Vinogradova SO RAN, NITs OIGGM: Irkutsk, 1998.

  26. Kozlov, V.D., Geokhimiya i rudonosnost' granitoidov redkometall’nykh provintsii (Geochemistry and Ore Potential of Granitoids of Rare-Metal Province), Tauson, L.V, Eds., Moscow: Nauka, 1985.

  27. Krivolutskaya, N.A. and Gongal’skii, B.I., Klyuchevskoe deposit, Mestorozhdeniya Zabaikal’ya (Transbaikalian Deposits) Laverov, N.P, Eds., Moscow: Geoinformmark, 1995, vol. 1, book 2, pp. 33–40.

  28. Kuzmin, M.I. and Antipin, V.S., Geochemical characteristics of Mesozoic granitoids of Eastern Transbaikalia, Geokhimiya redkikh elementov v magmaticheskikh kompleksakh Vostochnoi Sibiri (Geochemistry of Trace Elements in the Magmatic Complexes of East Siberia), Moscow: Nauka, 1972, pp. 132–185.

    Google Scholar 

  29. Lai, J. and Chi, G., CO2-rich fluid inclusions with chalcopyrite daughter mineral from the Fenghuangshan Cu–Fe–Au deposit, China: implications for metal transport in vapour, Miner. Deposita, 2007, vol. 42, pp. 293–299.

    Article  Google Scholar 

  30. Lowenstern, J.B., Carbon dioxide in magmas and implications for hydrothermal systems, Miner. Deposita, 2001, vol. 36, pp. 490–502.

    Article  Google Scholar 

  31. Naumov, V.B., Dorofeeva, V.A., Girnis, A.V., and Yarmolyuk, V.V., Mean concentrations of volatile components, major and trace elements in magmatic melts in major geodynamic environments on Earth. I. Mafic melts, Geochem. Int., 2017, vol. 55, no. 7, pp. 618–643.

    Google Scholar 

  32. Naumov, V.B., Dorofeeva, V.A., Girnis, A.V., and Yarmolyuk, V.V., Mean concentrations of volatile components and of major and trace elements in magmatic melts of the dominant geodynamic settings of the Earth. II. Silicic melts, Geochem. Int., 2019, vol. 57, no. 4, pp. 407–423.

    Article  Google Scholar 

  33. Painsi, M., Daimond, L.V., and Akinfiev, N.N., Method of estimate of mole volumes and compositions of CO2–H2O–NaCl fluid inclusions on the basis of microthermometric and optical measurements, Mater. XIII Mezhdunar. konf. po termobarogeokhimii i IV simpoziuma APIFIS (Proc. 13th International Conference on Thermobarogeochemistry and 4th Symposium APIFIS), Moscow IGEM RAN, 2008, vol. 1, pp. 43-46.

  34. Petrograficheskii kodeks. Magmaticheskie, metamorficheskie, metasomaticheskie, impaktnye obrazovaniya, 2nd. Ed., (Petrographic Code. Magmatic, Metamorphic, Metasomatic, and Impact Rocks) Sharpenok, L.N, Bogatikov, O.A, and Petrov, O.V., Eds., St. Petersburg: VSEGEI, 2008.

  35. Phillips, G.N. and Evans, K.A., Role of CO2 in the formation of gold deposits, Nature, 2004, vol. 429, pp. 860–863.

    Article  Google Scholar 

  36. Prokof’ev, V.Yu. and Zorina, L.D., Fluid mode of the Darasun ore-magmatic system (Eastern Transbaikalia), Geol. Geofiz., 1996, vol. 37, no. 5, pp. 50–61.

    Google Scholar 

  37. Prokof’ev, V. Yu., Bortnikov, N.S., Zorina L.D., Kulikova, Z.I., Matel, N.L., Kolpakova, N.N., and Il’ina, G.F., Genetic features of the Darasun gold–sulfide deposit (Eastern Transbaikal region), Geol. Ore Deposits, 2000, vol. 42, no. 6, pp. 474–495.

    Google Scholar 

  38. Roedder, E. Fluid Incluions, Washington: Mineral. Soc. Amer., 1984.

    Book  Google Scholar 

  39. Richards, J.P., Magmatic to hydrothermal metal fluxes in convergent and collided margins, Ore Geol. Rev., 2011, vol. 40, pp. 1–26.

    Article  Google Scholar 

  40. Samson, I.M. and Walker, R.T., Cryogenic Raman spectroscopic studies in the system NaCl–CaCl2–H2O and implications for low-temperature phase behavior in aqueous fluid inclusions, Can. Mineral., 2000, vol. 38, pp. 35–43.

    Article  Google Scholar 

  41. Schmidt, C. and Bodnar, R.J., Synthetic fluid inclusions: XVI. PVTx-properties in the system H2O–NaCl–CO2 at elevated temperatures, pressures, and salinities, Geochim. Cosmochim Acta, 2000, vol. 64.

  42. Smirnov, S.S., Ocherk metallogenii Vostochnogo Zabaikal’ya (Essay on Metallogeny of Eastern Transbaikalia), Moscow–Leningrad: Gosgeoltekhizdat, 1944.

  43. Solov’ev, S.G., Metallogeniya shoshonitovogo magmatizma. (Metallogeny of Shoshonite Magmatism), Moscow: Nauchnyi mir, 2014.

  44. Sotnikov, V.I., Porphyry copper–molybdenum ore association: genesis, dimensions, and boundaries, Russ. Geol. Geophys., 2006, vol. 47, no. 3, pp. 342–354.

    Google Scholar 

  45. Sotnikov, V.I., Berzina, A.P., Nikitina, E.I., Proskuryakov, A.A., and Skuridin, V.A., Medno-molibdenovaya rudnaya formatsiya (na primere Sibiri i sopredel’nykh regionov) (Copper–Molybdenum Ore Formation by the Example of Siberia and Adjacent Regions), Novosibirsk: Nauka, 1977. 423 s.

  46. Sotnikov, V.I., Ponomarchuk, V.A., Berzina, A.P., and Gimon, V.O., Magmatic and metallogenic precursors of ore-forming porphyry magmatism in copper–molybdenum ore clusters, Russ. Geol. Geophys., 2006, vol. 47, no. 12, pp. 1251–1259.

    Google Scholar 

  47. Spiridonov, A.M., Zorina, L.D., and Kitaev, N.A., Zolotonosnye rudno-magmaticheskie sistemy Zabaikal’ya (Gold-Bearing Ore-Magmatic Systems of Transbaikalia), Korobeinikov, A.F., Eds., Novosibirsk: Geo, 2006.

    Google Scholar 

  48. Spiridonov, A.M., Kozlov, V.D., Zorina, L.D., Men’shikov, V.I., and Bychinskii, V.A., Distribution of gold in igneous granitoid complexes in the central and southwestern areas of Eastern Transbaikalia, Russ. Geol. Geophys., 2010, vol. 51, no. 8, pp. 846–856.

    Article  Google Scholar 

  49. Tauson, L.V., Geokhimicheskie tipy i potentsial’naya rudonosnost' granitoidov (Geochemical Types and Ore Potential of Granitoids), Moscow: Nauka, 1977.

  50. Taucon, L.V., Magmas and ores, Geokhimiya rudoobpazuyushchikh sistem i metallogenicheckii analiz (Geochemistry of Ore-Forming Systems and Metallogenic Analysis), Novosibirsk: Nauka, 1989, pp. 5–7.

    Google Scholar 

  51. Tauson, L.V., Antipin, V.S., Zakharov, M.N., and Zubkov, V.S., Geokhimiya mezozoickikh latitov Zabaikal’ya (Geochemistry of Mesozoic Latites of Transbaikalia), Novosibirsk: Nauka, 1984.

  52. Tauson, L.V., Gundobin, G.M., and Zorina, L.D., Geokhimicheskie polya rudno-magmaticheskikh sistem (Geochemical Fields of Ore-Magmatic Systems), Kozlov, V.D., Eds., Novosibirsk: Nauka, 1987.

    Google Scholar 

  53. Webster, J.D., The exsolution of magmatic hydrosaline chloride liquids, Chem. Geol., 2004, vol. 210, pp. 33–48.

    Article  Google Scholar 

  54. Williams-Jones, A.E. and Heinrich, C.A., Vapor transport of metals and the formation of magmatic–hydrothermal ore deposits, Econ. Geol., 2005, vol. 100, pp. 1287–1312.

    Article  Google Scholar 

  55. Xu, J., Yang, R., Xiao, X., Lina, L., and Mulder, D.C., CO2-rich inclusions in vein gold-copper mineralization of the Sarekoubu–Qiaxia district, southern Altaides, China: implication for ore genesis, J. Geochem. Explor., 2015, vol. 159, pp. 262–277.

    Article  Google Scholar 

  56. Yurgenson, G.A., Mineral’noe syr’e Zabaikal’ya. Ch. I. Kn. 3. Blagorodnye metally (Mineral Raw Materials of Transbaikalia. Volume 1. Part 3. Noble Metals), Chita: Poisk, 2008.

  57. Yurgenson, G.A. and Yurgenson, T.N., Darasun ore field, Mestorozhdeniya Zabaikal’ya. (Transbaikalian Deposits), Laverov, N.P, Eds., Moscow: Geoinformmark, 1995, pp. 3–18.

  58. Yurgenson, G. A., Smntirnova, O. K., Solodukhina, M. A., and Filenko, R. A., Geochemical features of ores and technosols of tailing dump of the Davenda gold–molybdenum mine in Eastern Transbaikalia, Litosfera, 2016, no. 2, pp. 91–106.

  59. Zhatnuev, N.S., Mironov, A.G., Rychagov, S.N., and Gunin, V.I., Gidrotermal’nye sistemy s parovymi rezervuarami (Kontseptual’nye, eksperimental’nye i chislennye modeli) (Hydrothermal Systems with Vapor Reservoirs. Conceptual, Experimental, and Numerical Models), Tauson, V.L, Eds., Novosibirsk: SO RAN, 1996.

  60. Zorina, L.D. and Kulikova, Z.I., Ore-generating magmatism and gold mineralization of the Darasun ore cluster in Eastern Transbaikalia, Problemy petrogenezisa i rudoobrazovaniya: Tez. dokl. chtenii im. A. N. Zavaritskogo (Problems of Petrogenesis and Ore Formation. Proc. A.N. Zavaritskii Reading), Yekaterinburg, 1998, pp. 68–70.

Download references

ACKNOWLEDGMENTS

The authors sincerely thank NSU Professor Doctor of Geology and Mathematics A.S. Borisenko and Senior Researcher, GEOCHI RAS, Doctor of Geology and Mathematics V.B. Naumov for helpful advice on the manuscript. In addition, the authors express their sincere appreciation and respect to senior researcher, IGEM RAS, Doctor of Geology and Mineralogy Sergei Garoldovich Soloviev, whose partial, but at the same time benevolent and interested attitude toward the manuscript, as well as his extremely valuable comments and recommendations, allowed the authors to significantly improve the paper.

Funding

The study was financially supported by the state task of IGM SB RAS (topic no. 0330-2016-0001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Borovikov, Yu. A. Kalinin or B. N. Abramov.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borovikov, A.A., Kalinin, Y.A., Abramov, B.N. et al. Ore-Forming Fluids of the Aleksandrovskoe and Davenda Deposits (Eastern Transbaikalia). Geol. Ore Deposits 62, 288–313 (2020). https://doi.org/10.1134/S1075701520040030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701520040030

Keywords:

Navigation