Skip to main content
Log in

DnaK Chaperone Takes Part in Folding but Not in Refolding of Thermal Inactivated Proteins in Bacillus subtilis

  • GENETICS OF MICROORGANISMS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The role of the DnaKJE and Trigger Factor (TF) chaperones in folding and refolding of proteins in Bacillus subtilis is studied. Bacterial luciferases of Photobacterium leiognathi and Photorhabdus luminescens as protein substrates have been used. It is shown that DnaKJE takes part in folding but not in refolding of the thermal inactivated proteins. It is shown that TF takes part in the synthesis of thermolabile P. leiognathi luciferase, but significantly decreases the level of synthesis of thermostable P. luminescens luciferase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Calloni, G., Chen, T., Schermann, S.M., et al., DnaK functions as a central hub in the E. coli chaperone network, Cell. Rep., 2012, vol. 1, no. 3, pp. 251—264. https://doi.org/10.1016/j.celrep.2011.12.007

    Article  CAS  PubMed  Google Scholar 

  2. Hesterkamp, T. and Bukau, B., Role of the DnaK and HscA homologs of Hsp70 chaperones in protein folding in E. coli,EMBO J., 1998, vol. 17, no. 16, pp. 4818—4828. https://doi.org/10.1093/emboj/17.16.4818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu, C.P., Perrett, S., and Zhou, J.M., Dimeric trigger factor stably binds folding-competent intermediates and cooperates with the DnaK-DnaJ-GrpE chaperone system to allow refolding, J. Biol. Chem., 2005, vol. 280, no. 14, pp. 13315—13320. https://doi.org/10.1074/jbc.M414151200

    Article  CAS  PubMed  Google Scholar 

  4. Tyedmers, J., Mogk, A., and Bukau, B., Cellular strategies for controlling protein aggregation, Nat. Rev. Mol. Cell Biol., 2010, vol. 11, no. 11, pp. 777—788. https://doi.org/10.1038/nrm2993

    Article  CAS  PubMed  Google Scholar 

  5. Stoecklin, G. and Bukau, B., Telling right from wrong in life—cellular quality control, Nat. Rev. Mol. Cell Biol., 2013, vol. 14, no. 10, pp. 613—615. https://doi.org/10.1038/nrm3662

    Article  CAS  PubMed  Google Scholar 

  6. Doyle, S.M., Genest, O., and Wickner, S., Protein rescue from aggregates by powerful molecular chaperone machines, Nat. Rev. Mol. Cell Biol., 2013, vol. 14, no. 10, pp. 617—629. https://doi.org/10.1038/nrm3660

    Article  CAS  PubMed  Google Scholar 

  7. Kang, P.J. and Craig, E.A., Identification and characterization of a new Escherichia coli gene that is a dosage-dependent suppressor of a dnaK deletion mutation, J. Bacteriol., 1990, vol. 172, no. 4, pp. 2055—2064. https://doi.org/10.1128/jb.172.4.2055-2064.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Deuerling, E., Schulze-Specking, A., Tomoyasu, T., et al., Trigger factor and DnaK cooperate in folding of newly synthesized proteins, Nature, 1999, vol. 400, no. 6745, pp. 693—696. https://doi.org/10.1038/23301

    Article  CAS  PubMed  Google Scholar 

  9. Frydman, J., Folding of newly translated proteins in vivo: the role of molecular chaperones, Annu. Rev. Biochem., 2001, vol. 70, no. 1, pp. 603—647. https://doi.org/10.1146/annurev.biochem.70.1.603

    Article  CAS  PubMed  Google Scholar 

  10. Agashe, V.R., Guha, S., Chang, H.C., et al., Function of trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed, Cell, 2004, vol. 117, no. 2, pp. 199—209. https://doi.org/10.1016/s0092-8674(04)00299-5

    Article  CAS  PubMed  Google Scholar 

  11. Hoffmann, A., Becker, A.H., Zachmann-Brand, B., et al., Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding, Mol. Cell, 2012, vol. 48, no. 1, pp. 63—74. https://doi.org/10.1016/j.molcel.2012.07.018

    Article  CAS  PubMed  Google Scholar 

  12. Wruck, F., Avellaneda, M.J., Koers, E.J., et al., Protein folding mediated by trigger factor and Hsp70: new insights from single-molecule approaches, J. Mol. Biol., 2018, vol. 430, no. 4, pp. 438—449. https://doi.org/10.1016/j.jmb.2017.09.004

    Article  CAS  PubMed  Google Scholar 

  13. Schulz, A. and Schumann, W., hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes, J. Bacteriol., 1996, vol. 178, no. 4, pp. 1088—1093. https://doi.org/10.1128/jb.178.4.1088-1093.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mogk, A., Homuth, G., Scholz, C., et al., The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis,EMBO J., 1997, vol. 16, no. 15, pp. 4579—4590. https://doi.org/10.1093/emboj/16.15.4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schumann, W., Regulation of bacterial heat shock stimulons, Cell Stress Chaperones, 2016, vol. 21, no. 6, pp. 959—968. https://doi.org/10.1007/s12192-016-0727-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reyes, D.Y. and Yoshikawa, H., DnaK chaperone machine and trigger factor are only partially required for normal growth of Bacillus subtilis,Biosci. Biotechnol. Biochem., 2002, vol. 66, no. 7, pp. 1583—1586. https://doi.org/10.1271/bbb.66.1583

    Article  CAS  PubMed  Google Scholar 

  17. Mogk, A., Bukau, B., Lutz, R., et al., Construction and analysis of hybrid Escherichia coli—Bacillus subtilis dnaK genes, J. Bacteriol., 1999, vol. 181, no. 6, pp. 1971—1974.

    Article  CAS  Google Scholar 

  18. Shi, L., Ravikumar, V., Derouiche, A., et al., Tyrosine 601 of Bacillus subtilis DnaK undergoes phosphorylation and is crucial for chaperone activity and heat shock survival, Front. Microbiol., 2016, vol. 7, p. 533. https://doi.org/10.3389/fmicb.2016.00533

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kohanski, M.A., Dwyer, D.J., Wierzbowski, J., et al., Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death, Cell, 2008, vol. 135, no. 4, pp. 679—690. https://doi.org/10.1016/j.cell.2008.09.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kohanski, M.A., Dwyer, D.J., and Collins, J.J., How antibiotics kill bacteria: from targets to networks, Nat. Rev. Microbiol., 2010, vol. 8, no. 6, pp. 423—435. https://doi.org/10.1038/nrmicro2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goltermann, L., Good, L., and Bentin, T., Chaperonins fight aminoglycoside-induced protein misfolding and promote short-term tolerance in Escherichia coli,J. Biol. Chem., 2013, vol. 288, no. 15, pp. 10483—10489. https://doi.org/10.1074/jbc.M112.420380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin, J.T., Connelly, M.B., Amolo, C., et al., Global transcriptional response of Bacillus subtilis to treatment with subinhibitory concentrations of antibiotics that inhibit protein synthesis, Antimicrob. Agents Chemother., 2005, vol. 49, no. 5, pp. 1915—1926. https://doi.org/10.1128/AAC.49.5.1915-1926.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sambrook, J. and Russel, D.W., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab. Press, 2001, 3rd ed.

    Google Scholar 

  24. Spizizen, J., Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate, Proc. Natl. Acad. Sci. U.S.A., 1958, vol. 44, no. 10, pp. 1072—1078. https://doi.org/10.1073/pnas.44.10.1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Titok, M.A., Chapuis, J., Selezneva, Y.V., et al., Bacillus subtilis soil isolates: plasmid replicon analysis and construction of a new theta-replicating vector, Plasmid, 2003, vol. 49, no. 1, pp. 53—62. https://doi.org/10.1016/s0147-619x(02)00109-9

    Article  CAS  PubMed  Google Scholar 

  26. Guiziou, S., Sauveplane, V., Chang, H.J., et al., A part toolbox to tune genetic expression in Bacillus subtilis,Nucleic Acids Res., 2016, vol. 44, no. 15, pp. 7495—7508. https://doi.org/10.1093/nar/gkw624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bhavsar, A.P., Zhao, X., and Brown, E.D., Development and characterization of a xylose-dependent system for expression of cloned genes in Bacillus subtilis: conditional complementation of a teichoic acid mutant, Appl. Environ. Microbiol., 2001, vol. 67, no. 1, pp. 403—410. https://doi.org/10.1128/AEM.67.1.403-410.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Francis, K.P., Yu, J., Bellinger-Kawahara, C., et al., Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon, Infect. Immun., 2001, vol. 69, no. 5, pp. 3350—3358. https://doi.org/10.1128/IAI.69.5.3350-3358.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deryabin, D.G., Karimov, I.F., Manukhov, I.V., et al., Differential analysis of bactericidal systems of blood serum with recombinant luminescent Escherichia coli and Bacillus subtilis strains, Bull. Exp. Biol. Med., 2012, vol. 154, no. 1, pp. 59—63. https://doi.org/10.1007/s10517-012-1875-5.

  30. Tyul’kova, N.A. and Sandalova, T.P., A comparative study of the of the temperature effect on different bacterial luciferase, Biokhimiya, 1996, vol. 61, no. 2, pp. 275—287.

    Google Scholar 

  31. Manukhov, I.V., Eroshnikov, G.E., Vyssokikh, M.Y., et al., Folding and refolding of thermolabile and thermostable bacterial luciferases: the role of DnaKJ heat-shock proteins, FEBS Lett., 1999, vol. 448, nos. 2—3, pp. 265—268. https://doi.org/10.1016/s0014-5793(99)00384-1

    Article  CAS  PubMed  Google Scholar 

  32. Kramer, G., Rauch, T., Rist, W., et al., L23 protein functions as a chaperone docking site on the ribosome, Nature, 2002, vol. 419, no. 6903, pp. 171—174. https://doi.org/10.1038/nature01047

    Article  CAS  PubMed  Google Scholar 

  33. Ying, B.W., Taguchi, H., and Ueda, T., Co-translational binding of GroEL to nascent polypeptides is followed by post-translational encapsulation by GroES to mediate protein folding, J. Biol. Chem., 2006, vol. 281, no. 31, pp. 21813—21819. https://doi.org/10.1074/jbc.M603091200

    Article  CAS  PubMed  Google Scholar 

  34. Gloge, F., Becker, A.H., Kramer, G., et al., Co-translational mechanisms of protein maturation, Curr. Opin. Struct. Biol., 2014, vol. 24, pp. 24—33. https://doi.org/10.1016/j.sbi.2013.11.004

    Article  CAS  PubMed  Google Scholar 

  35. Mashaghi, A., Kramer, G., Bechtluft, P., et al., Reshaping of the conformational search of a protein by the chaperone trigger factor, Nature, 2013, vol. 500, no. 7460, pp. 98—101. https://doi.org/10.1038/nature12293

    Article  CAS  PubMed  Google Scholar 

  36. Nilsson, O.B., Müller-Lucks, A., Kramer, G., et al., Trigger factor reduces the force exerted on the nascent chain by a cotranslationally folding protein, J. Mol. Biol., 2016, vol. 428, no. 6, pp. 1356—1364. https://doi.org/10.1016/j.jmb.2016.02.014

    Article  CAS  PubMed  Google Scholar 

  37. Sharma, S.K., Rios, P., Christen, P., et al., The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase, Nat. Chem. Biol., 2010, vol. 6, no. 12, pp. 914—920. https://doi.org/10.1038/nchembio.455

    Article  CAS  PubMed  Google Scholar 

  38. Priya, S., Sharma, S.K., and Goloubinoff, P., Molecular chaperones as enzymes that catalytically unfold misfolded polypeptides, FEBS Lett., 2013, vol. 587, no. 13, pp. 1981—1987. https://doi.org/10.1016/j.febslet.2013.05.014

    Article  CAS  PubMed  Google Scholar 

  39. Genevaux, P., Keppel, F., Schwager, F., et al., In vivo analysis of the overlapping functions of DnaK and trigger factor, EMBO Rep., 2004, vol. 5, no. 2, pp. 195—200. https://doi.org/10.1038/sj.embor.7400067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by state assignment no. 595-00003-19 PR.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Yu. Gnuchikh or G. B. Zavilgelsky.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnuchikh, E.Y., Manukhov, I.V. & Zavilgelsky, G.B. DnaK Chaperone Takes Part in Folding but Not in Refolding of Thermal Inactivated Proteins in Bacillus subtilis . Russ J Genet 56, 1070–1078 (2020). https://doi.org/10.1134/S1022795420090070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420090070

Keywords:

Navigation