Skip to main content
Log in

Genomic Variability of Pathogenicity Islands in Nontoxigenic Strains of Vibrio cholerae O1 Biotype El Tor

  • GENETICS OF MICROORGANISMS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The results of comparative sequence analysis of pathogenicity islands (PIs), VPI-1 and VPI-2, in 43 nontoxigenic Vibrio cholerae strains are presented. It was demonstrated that these strains, differing from each other in the PI genome composition and structure, formed three genetically distinct groups (ctxAtcpA+VPI-2+, ctxAtcpA+VPI-2del+, and ctxAtcpAVPI-2del+) that differed in adaptive potential. It was found that the level of PI genomic variability caused by point mutations and deletions of different lengths was different. Nucleotide sequences of the VPI-1 structural and regulatory pathogenicity genes present in the chromosome of nontoxigenic ctxAtcpA+ vibrios were mostly identical to that of the reference toxigenic strain. Only a small number of polymorphic sites (5) with single nucleotide substitutions in the acfB, асfС, tcpА, tcpF, and tcpH genes were identified. At the same time, high VPI-2 genomic instability, manifested in the formation of deletions of different lengths (31 131–49 986 kb) and the occurrence of multiple single nucleotide substitutions in all conserved genes, was observed. It was first demonstrated that the loss of VPI-2 DNA correlated with the appearance of multiple substitutions in its genes of utilization of amino sugars and sialic acids, located in the nan-nag region (57–274 substitutions), including the nanH gene. Twelve previously undescribed nanH allelic variants were identified. It seems likely that high genetic diversity of these genes that are important for the vibrio survival in different ecological niches is one of the reasons for high adaptive potential of V. cholerae O1 biotype El Tor сtxAtcpAVPI-2del+, ubiquitous in an aquatic environment. On the basis of sequence analysis of the nanH gene included in VPI-2, as well as six housekeeping genes, cluster analysis that determined the phylogenetic relationships of different groups of nontoxigenic strains with each other and with toxigenic strains was performed. The genetic closeness of nontoxigenic ctxAtcpA+VPI-2+ and ctxAtcpA+VPI-2del+ vibrios to the causative agent of cholera was discovered. The novel data obtained in the present study on the PI structure in nontoxigenic vibrios not only shed light on the molecular mechanisms of genetically diverse strains with different adaptive potentials. Nontoxigenic strains with the determined genome structure that do not require the removal of key virulence genes upon genome editing can be useful in creating a new generation of live cholera vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Kaper, J., Morris, J., Jr., and Levine, M., Cholera, Clin. Microbiol. Rev., 1995, vol. 8, no. 1, pp. 48—86.

    Article  CAS  Google Scholar 

  2. WHO Scientific Working Group, Cholera and other vibrio-associated diarrhoeas, Bull. World Health Organ. 1980, vol. 58, no. 3, pp. 277–296.

  3. Faruque, S.M., Asadulghani Saha, M.N., et al., Analysis of clinical and environmental strains of nontoxigenic Vibrio cholerae for susceptibility to CTXPhi: molecular basis for origination of new strains with epidemic potential, Infect. Immun., 1998, vol. 66, no. 12, pp. 5819—5825.

    Article  CAS  Google Scholar 

  4. Levchenko, D.A., Kruglikov, V.D., Arkhangel’skaya, I.V., et al., Analysis of the monitoring results of cholera vibrios in environmental objects in the administrative territories of Russia using the GIS “Cholera 1989—2014,” Probl.Osobo Opasnykh Infekts., 2017, no. 4, pp. 99—102.

  5. Takemura, T., Murase, K., Maruyama, F., et al., Genetic diversity of environmental Vibrio cholerae O1 strains isolated in Northern Vietnam, Infect. Genet. Evol., 2017, vol. 54, pp. 146—151. https://doi.org/10.1016/j.meegid.2017.06.017

    Article  PubMed  Google Scholar 

  6. Heidelberg, J.F., Elsen, J.A., Nelson, W.C., et al., DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae,Nature, 2000, vol. 406, pp. 477—483. https://doi.org/10.1038/35020000

    Article  CAS  PubMed  Google Scholar 

  7. Marsh, J.W. and Taylor, R.K., Genetic and transcriptional analyses of the Vibrio cholerae mannose-sensitive hemagglutinin type 4 pilus gene locus, J. Bacteriol., 1999, vol. 181, no. 4, pp. 1110—1117.

    Article  CAS  Google Scholar 

  8. Dziejman, M., Balon, E., Boyd, D., et al., Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 3, pp. 1556—1561. https://doi.org/10.1073/pnas.042667999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smirnova, N.I., Zadnova, S.P., Agafonov, D.A., et al., Comparative molecular-genetic analysis of mobile elements in natural strains of cholera agent, Russ. J. Genet., 2013, vol. 49, no. 9, pp. 898—908. https://doi.org/10.1134/S1022795413090087

    Article  CAS  Google Scholar 

  10. Hu, D., Liu, B., Feng, L., et al., Origins of the current seventh cholerae pandemic, Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, no. 48, pp. 7730—7739. https://doi.org/10.1073/pnas.1608732113

    Article  CAS  Google Scholar 

  11. Waldor, M.R. and Mekalanos, J.J., Lysogenic conversion by a filamentous phage encoding cholera toxin, Science, 1996, vol. 272, no. 5270, pp. 1910—1914. https://doi.org/10.1126/science.272.5270.1910

    Article  CAS  PubMed  Google Scholar 

  12. Karaolis, D.K., Johnson, J.A., Bailey, C.C., et al., A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, no. 6, pp. 3134—3139. https://doi.org/10.1073/pnas.95.6.3134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Faruque, Sh.M. and Mekalanos, J.J., Pathogenicity islands and phages in Vibrio cholerae evolution, Trends Microbiol., 2003, vol. 11, no. 11, pp. 505—510. https://doi.org/10.1016/j.tim.2003.09.003

    Article  CAS  PubMed  Google Scholar 

  14. Il’ina, T.S., Filamentous bacteriophages and their role in the virulence and evolution of pathogenic bacteria, Mol. Genet. Microbiol. Virol., 2015, vol. 30, no. 1, pp. 3—9. https://doi.org/10.3103/S0891416815010036

    Article  Google Scholar 

  15. Smirnova, N.I., Kul’shan’, T.A., Baranikhina, E.Yu., et al., Genome structure and origin of nontoxigenic strains of Vibrio cholerae of El Tor biovar with different epidemiological significance, Russ. J. Genet., 2016, vol. 52, no. 8, pp. 914—925. https://doi.org/10.7868/S0016675816060126

    Article  CAS  Google Scholar 

  16. Pang, B., Yan, M., Cui, Z., et al., Genetic diversity of toxigenic and nontoxigenic Vibrio cholerae serogroups O1 and O139 revealed by array-based comparative genomic hybridization, J. Bacteriol., 2007, vol. 189, pp. 4837—4849. https://doi.org/10.1128/JB.01959-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jermyn, W.S. and Boyd, E.F., Characterization of a novel Vibrio pathogenicity island (VPI-2) encoding neuraminidase (nanH) among toxigenic Vibrio cholerae isolates, Microbiology, 2002, vol. 148, pp. 3681—3693. https://doi.org/10.1099/00221287-148-11-3681

    Article  CAS  PubMed  Google Scholar 

  18. Jermyn, W.S. and Boyd, E.F., Molecular evolution of Vibrio pathogenicity island-2 (VPI-2): mosaic structure among Vibrio cholerae and Vibrio mimicus natural isolates, Microbiology, 2005, vol. 151, pp. 311—322. https://doi.org/10.1099/mic.0.27621-0

    Article  CAS  PubMed  Google Scholar 

  19. Siriphap, A., Leekitcharoenphon, P., Kaas, R.S., et al., Characterization and genetic variation of Vibrio cholerae isolated from clinical and environmental sources in Thailand, PLoS One, 2017, vol. 19, no. 12(1), article 0169324. https://doi.org/10.1371/journal.pone.0169324

  20. Karaolis, D.K., Somara, S., Maneval, D.R., Jr., et al., A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria, Nature, 1999, vol. 399, no. 6734, pp. 375—379. https://doi.org/10.1038/20715

    Article  CAS  PubMed  Google Scholar 

  21. Karaolis, D.K.R., Lan, R., Kaper, J.B., and Reeves, P.R., Comparison of Vibrio cholerae pathogenicity islands in sixth and seventh pandemic strains, Infect. Immun., 2001, vol. 69, no. 3, pp. 1947—1952. https://doi.org/10.1128/IAI.69.3.1947-1952.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Choi, S.Y., Rashed, S.M., Hasan, N.A., et al., Phylogenetic diversity of Vibrio cholerae associated with endemic cholera in Mexico from 1991 to 2008, mBio, 2016, vol. 7, no. 2. e02160–15. https://doi.org/10.1128/mBio.02160-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Matson, J.S., Withey, J.H., and DiRita, V.J., Regulatory networks controlling Vibrio cholerae virulence gene expression, Infect. Immun., 2007, vol. 75, no. 12, pp. 5542—5549. https://doi.org/10.1128/IAI.01094-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Almagro-Moreno, S. and Boyd, E.F., Sialic acid catabolism confers a competitive advantage to pathogenic Vibrio cholerae in the mouse intestine, Infect. Immun., 2009, vol. 77, no. 9, pp. 3807—3816. https://doi.org/10.1128/IAI.00279-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smirnova, N.I., Agafonov, D.A., Shchelkanova, E.Yu., et al., Genomic diversity of nontoxigenic Vibrio cholera O1 strains isolated in the territory of Russia and neighboring states, Mol. Genet. Microbiol. Virol., 2018, vol. 33, no. 2, pp. 76—86.

    Article  Google Scholar 

  26. Organizatsiya raboty laboratorii, ispol’zuyushchikh metody amplifikatsii nukleinovykh kislot pri rabote s materialom, soderzhashchim mikroorganizmy I–IV grupp patogennosti: metodicheskie ukazaniya 1.3.2569–09 (Organization of the Work of Laboratories that Use Nucleic Acid Amplification Methods When Working with Material Containing Microorganisms of Pathogenicity Groups I–IV: Guidelines 1.3.2569–09), Moscow: Federal’nyi Tsentr Gigieny i Epidemiologii Rospotrebnadzora, 2009.

  27. de Abreu Figuiredo, S.C., Nevers-Borges, A.C., and Coelho, A., The neuraminidase gene is present in the non-toxigenic Vibrio cholerae Amazonia strain: a different allele in comparison to the pandemic strains, Mem. Inst. Oswaldo Cruz (Rio de Janeiro), 2005, vol. 100, no. 6, pp. 563—569. https://doi.org/10.1590/s0074-02762005000600010

    Article  Google Scholar 

  28. Moran, N.A., Accelerated evolution and Muller’s rachet in endosymbiotic bacteria, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, no. 7, pp. 2873—2878. https://doi.org/10.1073/pnas.93.7.2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Itoh, T., Martin, W., and Nei, M., Acceleration of genomic evolution caused by enhanced mutation rate in endocellular symbionts, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 20, pp. 12944—12948. https://doi.org/10.1073/pnas.192449699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Smirnova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by N. Maleeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, N.I., Kritsky, A.A., Alkhova, J.V. et al. Genomic Variability of Pathogenicity Islands in Nontoxigenic Strains of Vibrio cholerae O1 Biotype El Tor. Russ J Genet 56, 1055–1069 (2020). https://doi.org/10.1134/S1022795420080141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420080141

Keywords:

Navigation