Skip to main content

Advertisement

Log in

New Look on Device to Device NOMA Systems: with and Without Wireless Power Transfer Modes

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, device to device (D2D) network is studied to support transmission in close distance among group of two users. Such two users benefit from new technique of multiple access, namely non-orthogonal multiple access. Two modes of D2D are considered, such as direct and relay links. Energy harvesting and design of multiple antennas have main impacts on system performance. We derive the closed-form expressions of outage probability for two devices in many scenarios. The Decode and Forward relaying scheme is adopted in this study. To ensure the quality of service (QoS) for the devices, suitable mode can be decided based on specific demand. We compare system performance by varying main parameters such as power allocation factors or transmit signal to noise ratio. Numerical results are performed to verify the effectiveness of the proposed D2D transmission strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang, Z., Long, K., Vasilakos, A. V., & Hanzo, L. (2016). Full-duplex wireless communications: Challenges, solutions, and future research directions. Proceedings of the IEEE, 104(7), 1369–1409.

    Article  Google Scholar 

  2. Bariah, L., Muhaidat, S., & Al-Dweik, A. (2020). Error performance of NOMA-based cognitive radio networks with partial relay selection and interference power constraints. IEEE Transactions on Communications, 68(2), 765–777.

    Article  Google Scholar 

  3. Song, Y., Yang, W., Xiang, Z., Sha, N., Wang, H., & Yang, Y. (2020). An analysis on secure millimeter wave NOMA communications in cognitive radio networks. IEEE Access, 8, 78965–78978.

    Article  Google Scholar 

  4. Ku, M.-L., Li, W., Chen, Y., & Liu, K. J. R. (2016). Advances in energy harvesting communications: Past, present, and future challenges. IEEE Communications Surveys and Tutorials, 18(2), 1384–1412. 2nd Quart.

    Article  Google Scholar 

  5. Mosavat-Jahromi, H., Maham, B., & Tsiftsis, T. A. (2017). Maximizing spectral efficiency for energy harvesting-aware WBAN. IEEE Journal of Biomedical and Health Informatics, 21(3), 732–742.

    Article  Google Scholar 

  6. Nguyen, H.-S., Do, D.-T., Nguyen, T.-S., & Voznak, M. (2017). Exploiting hybrid time switching-based and power splitting-based relaying protocol in wireless powered communication networks with outdated channel state information. Automatika—Journal for Control, Measurement, Electronics, Computing and Communications, 58(1), 111–118.

    Google Scholar 

  7. Do, D.-T. (2015). Power switching protocol for two-way relaying network under hardware impairments. Radioengineering, 24(3), 765–771.

    Article  Google Scholar 

  8. Yang, G., Ho, C. K., Zhang, R., & Guan, Y. L. (2015). Throughput optimization for massive MIMO systems powered by wireless energy transfer. IEEE Journal on Selected Areas in Communications, 33(8), 1640–1650.

    Google Scholar 

  9. Nguyen, H.-S., Bui, A.-H., Do, D.-T., & Voznak, M. (2016). Imperfect channel state information of AF and DF energy harvesting cooperative networks. China Communications, 13(10), 11–19.

    Article  Google Scholar 

  10. Do, D.-T. (2016). Optimal throughput under time power switching based relaying protocol in energy harvesting cooperative network. Wireless Personal Communications, 87(2), 551–564.

    Article  Google Scholar 

  11. Tutuncuoglu, K., Varan, B., & Yener, A. (2015). Throughput maximization for two-way relay channels with energy harvesting nodes: The impact of relaying strategies. IEEE Transactions on Communications, 63(6), 2081–2093.

    Article  Google Scholar 

  12. Wang, X., Liu, J., & Zhai, C. (2017). Wireless power transfer-based multi-pair two-way relaying with massive antennas. IEEE Transactions on Wireless Communications, 16(11), 7672–7684.

    Article  Google Scholar 

  13. Ma, Y., Chen, H., Lin, Z., Li, Y., & Vucetic, B. (2015). Distributed and optimal resource allocation for power beacon-assisted wireless-powered communications. IEEE Transactions on Communications, 63(10), 3569–3583.

    Article  Google Scholar 

  14. Al-Imari, M., Xiao, P., & Imran, M. A. (August, 2015). Receiver and resource allocation optimization for uplink NOMA in 5G wireless networks. In Proceedings of the International Symposium on Wireless Communication Systems (ISWCS) (pp. 151–155). https://doi.org/10.1109/ISWCS.2015.7454317.

  15. Saito, Y., Benjebbour, A., Kishiyama, Y., & Nakamura, T. (September, 2013). Systemlevel performance evaluation of downlink non-orthogonal multiple access (NOMA). In Proceedings of the IEEE 24th annual international symposium personal, indoor, mobile radio communications (PIMRC) (pp. 611–615).

  16. Zuo, H., & Tao, X. (October, 2017). Power allocation optimization for uplink nonorthogonal multiple access systems. In Proceedings of the 9th International Conference on Wireless Communications Signal Processing (WCSP) (pp. 1–5).

  17. Na, Z., Lv, J., Jiang, F., Xiong, M., & Zhao, N. (2019). Joint subcarrier and subsymbol allocation-based simultaneous wireless information and power transfer for multiuser GFDM in IoT. IEEE Internet of Things Journal, 6(4), 5999–6006.

    Article  Google Scholar 

  18. Do, D.-T., Le, A.-T., & Lee, B.-M. (2019). On performance analysis of underlay cognitive radio-aware hybrid OMA/NOMA networks with imperfect CSI. Electronics, 8(7), 819.

    Article  Google Scholar 

  19. Li, X., Wang, Q., Peng, H., Zhang, H., Do, D.-T., Rabie, K. M., et al. (2020). A unified framework for HS-UAV NOMA networks: Performance analysis and location optimization. IEEE Access, 8, 13329–13340.

    Article  Google Scholar 

  20. Do, Dinh-Thuan, Le, A., & Lee, B. M. (2020). NOMA in cooperative underlay cognitive radio networks under imperfect SIC. IEEE Access, 8, 86180–86195.

    Article  Google Scholar 

  21. Do, D.-T., & Le, A.-T. (2019). NOMA based cognitive relaying: Transceiver hardware impairments, relay selection policies and outage performance comparison. Computer Communications, 146, 144–154.

    Article  Google Scholar 

  22. Nguyen, T.-L., & Do, D.-T. (2018). Power allocation schemes for wireless powered NOMA systems with imperfect CSI: System model and performance analysis. International Journal of Communication Systems, 31(15), e3789.

    Article  Google Scholar 

  23. Dang, H., Van Nguyen, M., Do, D., Pham, H., Selim, B., & Kaddoum, G. (2020). Joint relay selection, full-duplex and device-to-device transmission in wireless powered NOMA networks. IEEE Access, 8, 82442–82460.

    Article  Google Scholar 

  24. Lv, L., Ding, Z., Ni, Q., & Chen, J. (2018). Secure MISO-NOMA transmission with artificial noise. IEEE Transactions on Vehicular Technology, 67(7), 6700–6705.

    Article  Google Scholar 

  25. Zhu, J., Zou, Y., Wang, G., Yao, Y.-D., & Karagiannidis, G. K. (2016). On secrecy performance of antenna-selection-aided MIMO systems against eavesdropping. IEEE Transactions on Vehicular Technology, 65(1), 214–225.

    Article  Google Scholar 

  26. Le, C.-B., & Do, D.-T. (2019). Joint evaluation of imperfect SIC and fixed power allocation scheme for wireless powered D2D-NOMA networks with multiple antennas at base station. Wireless Networks, 25(8), 5069–5081.

    Article  Google Scholar 

  27. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series and products (7th ed.). New York: Academic Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh-Thuan Do.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Proposition 2

Based on (26), the outage probability of \(U_3\) can be expressed as

$$\begin{aligned} \begin{array}{l} {O_{{U_3}}} = 1 - \Pr \left[ {\gamma _{BS}^{\left( {{z_2}} \right) } \ge {\mu _2},\gamma _{{U_3}}^{\left( {{z_1}} \right) } \ge {\mu _2},\gamma _{{U_3}}^{\left( {{z_2}} \right) } \ge {\mu _2}} \right] \\ \quad = 1 - \underbrace{\Pr \left[ {\gamma _{BS}^{\left( {{z_2}} \right) } \ge {\mu _2}} \right] }_{{\varTheta _1}}\underbrace{\Pr \left[ {\gamma _{{U_3}}^{\left( {{z_1}} \right) } \ge {\mu _2},\gamma _{{U_3}}^{\left( {{z_2}} \right) } \ge {\mu _2}} \right] }_{{\varTheta _2}}. \end{array} \end{aligned}$$
(30)

Furthermore, \({{\varTheta _1}}\) can be calculated as

$$\begin{aligned} {\varTheta _1} = \Pr \left[ {{{\left| {{l_0}} \right| }^2} \ge \frac{{{\mu _2}}}{{{\delta _2}\beta }}} \right] = \exp \left( { - \frac{{{\mu _2}}}{{{\delta _2}\beta {\lambda _{{l_0}}}}}} \right) . \end{aligned}$$
(31)

Next, \({{\varTheta _2}}\) is computed by

$$\begin{aligned} \begin{array}{l} {\varTheta _2} = \Pr \left[ {\gamma _{{D_3}}^{\left( {{z_1}} \right) } \ge {\mu _2},\gamma _{{D_3}}^{\left( {{z_2}} \right) } \ge {\mu _2}} \right] \\ \quad \quad = \Pr \left[ {\frac{{{\delta _3}\beta {{\left| {{r_{k*}}} \right| }^2}}}{{{\delta _4}\beta {{\left| {{r_{k*}}} \right| }^2} + 1}} \ge {\mu _2},{\delta _4}\beta {{\left| {{r_{k*}}} \right| }^2} \ge {\mu _2}} \right] \\ \quad \quad = \Pr \left[ {{{\left| {{r_{k*}}} \right| }^2} \ge \frac{{{\mu _2}}}{{\beta \left( {{\delta _3} - {\mu _2}{\delta _4}} \right) }},{{\left| {{r_{k*}}} \right| }^2} \ge \frac{{{\mu _2}}}{{{\delta _4}\beta }}} \right] . \end{array} \end{aligned}$$
(32)

Based on (32), let \(\sigma = \max \left( {\frac{{{\mu _2}}}{{\beta \left( {{\delta _3} - {\mu _2}{\delta _4}} \right) }},\frac{{{\mu _2}}}{{{\delta _4}\beta }}} \right) \), \({{\varTheta _2}}\) can be calculated as

$$\begin{aligned} {\varTheta _2} = \Pr \left[ {{{\left| {{r_{k*}}} \right| }^2} \ge \sigma } \right] = \sum \limits _{k = 1}^K {\left( \begin{array}{l} K\\ k \end{array} \right) {{\left( { - 1} \right) }^{k - 1}}\exp \left( { - \frac{{k\sigma }}{{{\lambda _{{r_k}}}}}} \right) }. \end{aligned}$$
(33)

Plugging above values of (31) and (33) into (30) we obtain final formula.

This is end of proof. \(\square \)

Proof of Proposition 3

The outage probability for \(U_2\) can therefore be obtained as

$$\begin{aligned} \begin{array}{l} O_{{U_2}}^{\left( {EH} \right) } = 1 - \Pr \left[ {\gamma _{E - {U_2}}^{\left( {{z_1}} \right) } \ge {\mu _1}} \right] \\ \quad \quad \quad = 1 - \Pr \left[ {{{\left| {{l_{k*}}} \right| }^2} \ge \frac{{{\mu _1}}}{{{{\left| {{v_0}} \right| }^2}\beta \xi \psi \left( {{\delta _3} - {\mu _1}{\delta _4}} \right) }}} \right] \\ \quad \quad \quad = 1 - \int \limits _0^\infty {{F_{{{\left| {{l_{k*}}} \right| }^2}}}} \left( {\frac{{{\mu _1}}}{{x\beta \xi \psi \left( {{\delta _3} - {\mu _1}{\delta _4}} \right) }}} \right) {f_{{{\left| {{v_0}} \right| }^2}}}\left( x \right) dx. \end{array} \end{aligned}$$
(34)

With \({\delta _3} > {\mu _1}{\delta _4}\), it can be given that

$$\begin{aligned} \begin{array}{l} O_{{U_2}}^{\left( {EH} \right) } = 1 - \sum \limits _{k = 1}^K {\left( \begin{array}{l} K\\ k \end{array} \right) {{\left( { - 1} \right) }^{k - 1}}\frac{1}{{{\lambda _{{v_0}}}}}} \int \limits _0^\infty {\exp \left( { - \frac{{k{\mu _1}}}{{x{\lambda _{{l_k}}}\beta \xi \psi \left( {{\delta _3} - {\mu _1}{\delta _4}} \right) }} - \frac{x}{{{\lambda _{{v_0}}}}}} \right) } dx\\ \quad \quad \quad = 1 - \sum \limits _{k = 1}^K {\left( \begin{array}{l} K\\ k \end{array} \right) {{\left( { - 1} \right) }^{k - 1}}} \sqrt{\frac{{4k{\mu _1}}}{{{\lambda _{{l_k}}}{\lambda _{{v_0}}}\beta \xi \psi \left( {{\delta _3} - {\mu _1}{\delta _4}} \right) }}} \\ \quad \quad \quad \times {\mathrm{{K}}_{{1}}}\left( {\sqrt{\frac{{4k{\mu _1}}}{{{\lambda _{{l_k}}}{\lambda _{{v_0}}}\beta \xi \psi \left( {{\delta _3} - {\mu _1}{\delta _4}} \right) }}} } \right) . \end{array} \end{aligned}$$
(35)

By using the \( \int _0^\infty {{e^{\left( { - \frac{\beta }{{4x}} - \gamma x} \right) }}dx = \sqrt{\frac{\beta }{\gamma }} {\mathrm{K}_1}\left( {\sqrt{\beta \gamma } } \right) } \) [27].

Similarly, it can be obtained the closed-form of \(U_3\) such as

$$\begin{aligned} \begin{array}{l} O_{{U_3}}^{\left( {EH} \right) } = 1 - \Pr \left[ {\gamma _{E - {U_3}}^{\left( {{z_2}} \right) } \ge {\mu _2}} \right] \\ \quad \quad = 1 - \Pr \left[ {{{\left| {{l_{k*}}} \right| }^2} \ge \frac{{{\mu _2}}}{{{{\left| {{r_0}} \right| }^2}{\delta _4}\beta \xi \psi }}} \right] \\ \quad \quad = 1 - \int \limits _0^\infty {{F_{{{\left| {{l_{k*}}} \right| }^2}}}} \left( {\frac{{{\mu _2}}}{{x{\delta _4}\beta \xi \psi }}} \right) {f_{{{\left| {{r_0}} \right| }^2}}}\left( x \right) dx\\ \quad \quad = 1 - \sum \limits _{k = 1}^K {\left( \begin{array}{l} K\\ k \end{array} \right) {{\left( { - 1} \right) }^{k - 1}}\frac{1}{{{\lambda _{{r_0}}}}}} \int \limits _0^\infty {\exp \left( { - \frac{{k{\mu _2}}}{{x{\lambda _{{l_k}}}{\delta _4}\beta \xi \psi }} - \frac{x}{{{\lambda _{{r_0}}}}}} \right) } dx\\ \quad \quad = 1 - \sum \limits _{k = 1}^K {\left( \begin{array}{l} K\\ k \end{array} \right) {{\left( { - 1} \right) }^{k - 1}}} \sqrt{\frac{{4k{\mu _2}}}{{{\lambda _{{l_k}}}{\lambda _{{r_0}}}{\delta _4}\beta \xi \psi }}} {\mathrm{{K}}_{{1}}}\left( {\sqrt{\frac{{4k{\mu _2}}}{{{\lambda _{{l_k}}}{\lambda _{{r_0}}}{\delta _4}\beta \xi \psi }}} } \right) . \end{array} \end{aligned}$$
(36)

It completes Proposition 3. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, DT., Van Nguyen, MS. New Look on Device to Device NOMA Systems: with and Without Wireless Power Transfer Modes. Wireless Pers Commun 116, 2485–2500 (2021). https://doi.org/10.1007/s11277-020-07806-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07806-0

Keywords

Navigation