Skip to main content

Advertisement

Log in

Bonding pressure effects on characteristics of microstructure, mechanical properties, and mass diffusivity of Ti-6Al-4V and TiAlNb diffusion-bonded joints

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

This research highlights the influence of bonding pressure on the features of diffusion-bonded joints (DBJs) between Ti6Al4V alloy and TiAlNb alloy investigated at 900 °C for 120 minutes in vacuum with variable pressures of 0.5, 1, 2, 3, and 4 MPa. Characterization of the bonded interfaces was conducted using optical microscopy and scanning electron microscopy in backscattered mode. A molecular dynamics (MD) model was developed with the commercial Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) package utilizing second nearest neighbor modified embedded atom method (2NN MEAM) potentials to predict the diffusion mechanism with variable compressive pressures along the TiAlNb|Ti6Al4V joint interface. Microstructural characterization with light microscopy and scanning electron microscopy in back-scattered mode (SEM-BSE) along the TiAlNb|Ti6Al4V DBJs revealed no interfacial intermetallic phase nucleation. Energy dispersive spectroscopy (EDS) maps and line profiles helped to understand composition variation across the interface. The maximum joint tensile strength of ~ 875 MPa, ~ 13.1% elongation, and mass diffusivity on both sides were obtained at 4 MPa processing pressures with a significant tendency of diffusivity improvement in the TiAlNb side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kolmogorov VL, Zalazinsky AG (1998) On metal joining and the prediction of the strength of solid-phase joints. J Mater Process Technol 75:157–164

    Article  Google Scholar 

  2. Miriyev A, Barlam D, Shneck R, Stern A, Frage N (2014) Steel to titanium solid state joining displaying superior mechanical properties. J Mater Process Technol 214:2884–2890

    Article  CAS  Google Scholar 

  3. Banerjee D, Gogia AK, Nandi TK, Joshi VA (1988) A new ordered orthorhombic phase in a Ti3Al-Nb alloy. Acta Metall 36:871–882

    Article  CAS  Google Scholar 

  4. Rieth M (2009) Diffusion weld study for Test Blanket Module fabrication. Fusion Eng Des 84:1602–1605

    Article  CAS  Google Scholar 

  5. Ustinov AI, Falchenko IV, Melnychenko TV, Petrushynets LV, Liapina KV, Shishkin AE (2017) Diffusion welding through vacuum-deposited porous interlayers. J Mater Process Technol 247:268–279

    Article  Google Scholar 

  6. Jafarian M, Khodabandeh A, Manafi S (2015) Evaluation of diffusion welding of 6061 aluminum and AZ31 magnesium alloys without using an interlayer. Mater Des 65:160–164

    Article  CAS  Google Scholar 

  7. Xu B, Wu XY, Lei JG, Cheng R, Ruan SC, Wang ZL (2015) Laminated fabrication of 3D micro-electrode based on WEDM and thermal diffusion welding. J Mater Process Technol 221:56–65

    Article  CAS  Google Scholar 

  8. Aboudi D, Lebaili S, Taouinet M, Zollinger J (2017) Microstructure evolution of diffusion welded 304L/Zircaloy4 with copper interlayer. Mater Des 116:386–394

    Article  CAS  Google Scholar 

  9. Azizi A, Alimardan H (2016) Effect of welding temperature and duration on properties of 7075 Al to AZ31B Mg diffusion bonded joint. Trans Nonferrous Metals Soc China 26:85–92

    Article  CAS  Google Scholar 

  10. Soltani S, Abdolrahim N, Sepehrband P (2017) Molecular dynamics study of self-diffusion in the core of a screw dislocation in face centered cubic crystals. Scr Mater 133:101–104

    Article  CAS  Google Scholar 

  11. Terentyev D, Monnet G, Grigorev P (2013) Transfer of molecular dynamics data to dislocation dynamics to assess dislocation–dislocation loop interaction in iron. Scr Mater 69:578–581

    Article  CAS  Google Scholar 

  12. Borodin EN, Mayer AE (2015) Structural model of mechanical twinning and its application for modeling of the severe plastic deformation of copper rods in Taylor impact tests. Int J Plast 74:141–157

    Article  CAS  Google Scholar 

  13. Wang B, Urbassek HM (2013) Molecular dynamics study of the a–c phase transition in Fe induced by shear deformation. Acta Mater 61:5979–5987

    Article  CAS  Google Scholar 

  14. Zhang Y, Jiang S (2018) Atomistic investigation on diffusion welding between stainless steel and pure Ni based on molecular dynamics simulation. Mater 11:1957

    Article  Google Scholar 

  15. Evteev AV, Levchenko EV Belova I, V Murch GE (2011) Molecular dynamics simulation of diffusion in a (110) B2-NiAl film. Intermetal 19:848–854

    Article  CAS  Google Scholar 

  16. Li C, Li D, Tao X, Chen H, Ouyang Y (2014) Molecular dynamics simulation of diffusion bonding of Al–Cu interface. Model Simul Mater Sci Eng 22:065013

    Article  Google Scholar 

  17. Huang K, Sun HL, Huang ZW, Liao MY (2018) Li Y (2018) Microstructure evolution and diffusion mechanism of Nb/TiAl alloy diffusion-bonded joints. Rare Metals. https://doi.org/10.1007/s12598-018-1125-8

  18. Luo M, Liang L, Lang L, Xiao S, Hu W, Deng H (2018) Molecular dynamics simulations of the characteristics of Mo/Ti interfaces. Comput Mater Sci 141:293–301

    Article  CAS  Google Scholar 

  19. Jang JW, Kwon J, Lee BJ (2010) Effect of stress on self-diffusion in bcc Fe: an atomistic simulation study. Scr Mater 63:39–42

    Article  CAS  Google Scholar 

  20. Liang L, Zhang J, Xu Y, Zhang Y, Wang W, Yang J (2018) A molecular dynamics investigation of the effect of pressure and orientation on the Cu consumption in Cu-Cu3Sn interface under isothermal ageing and its dissipative mechanisms during traction. Preprints: 2018010072 (https://doi.org/10.20944/preprints201801.0072.v1)

  21. Li H, Yang C, Sun L, Li M (2017) Influence of pressure on interfacial microstructure evolution and atomic diffusion in the hot-press bonding of Ti-33Al-3V to TC17. J Alloys Compd 720:131–138

    Article  CAS  Google Scholar 

  22. Kato H, Shibata M, Yoshikawa K (1986) Diffusion welding of Ti/Ti and Ti/stainless steel rods under phase transformation in air. Mater Sci Technol 2(4):405–409

    Article  CAS  Google Scholar 

  23. Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications, Academic Press, 1

  24. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  CAS  Google Scholar 

  25. Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model Simul Mater Sci Eng 18(1):015012

    Article  Google Scholar 

  26. Baskes MI (1992) Modified embedded-atom potentials for cubic materials and impurities. Phys Rev B 46:2727

    Article  CAS  Google Scholar 

  27. Lee BJ, Baskes MI (2000) Second nearest-neighbor modified embedded-atom-method potential. Phys Rev B 62:8564

    Article  CAS  Google Scholar 

  28. Kim YM, Lee BJ, Baskes MI (2006) Modified embedded-atom method interatomic potentials for Ti and Zr. Phys Rev B 74:014101

    Article  Google Scholar 

  29. Lee BJ, Shim JH, Baskes MI (2003) Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest neighbor modified embedded atom method. Phys Rev B 68:144112

    Article  Google Scholar 

  30. Lee BJ, Baskes MI, Kim H, Cho YK (2001) Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Phys Rev B 64:184102

    Article  Google Scholar 

  31. Kim Y, Kim HK, Jung WS, Lee BJ (2016) Atomistic modeling of the Ti–Al binary system. Comput Mater Sci 119:1–8

    Article  Google Scholar 

  32. Feng C, Peng X, Fu T, Zhao Y, Huang C, Wang Z (2017) Molecular dynamics simulation of nano-indentation on Ti-V multilayered thin films. Physica E: Low Dimen Syst Nanostruct 87:213–219

    Article  CAS  Google Scholar 

  33. Shim JH, Ko WS, Kim KH, Lee HS, Lee YS, Suh JY, Cho YW, Lee BJ (2013) Prediction of hydrogen permeability in V–Al and V–Ni alloys. J Membr Sci 430:234–241

    Article  CAS  Google Scholar 

  34. Rajamallu K, Niranjan MK, Ameyama K, Dey SR (2017) Phase stability and elastic properties of β Ti–Nb–X (X= Zr, Sn) alloys: an ab initio density functional study. Model Simul Mater Sci Eng 25:085013

    Article  Google Scholar 

  35. Farkas D, Jones C (1996) Interatomic potentials for ternary Nb-Ti-Al alloys. Modelling and Simulation Model Simul Mater Sci Eng 4: 23.

  36. Debski A, Debski R, Gasior W (2014) New features of Entall database: comparison of experimental and model formation enthalpies/Nowe Funkcje Bazy Danych Entall: Porównanie Doświadczalnych I Modelowych Entalpii Tworzenia. Arch Metall Mater 59:1337–1343

    Article  Google Scholar 

  37. Kumar KCH, Wollants P, Delaey L (1994) Thermodynamic calculation of Nb-Ti-V phase diagram. Calphad 18:71–79

    Article  CAS  Google Scholar 

  38. Kim YM, Shin YH, Lee BJ (2009) Modified embedded-atom method interatomic potentials for pure Mn and the Fe–Mn system. Acta Mater 57:474–482

    Article  CAS  Google Scholar 

  39. Sa I, Lee BJ (2008) Modified embedded-atom method interatomic potentials for the Fe–Nb and Fe–Ti binary systems. Scr Mater 59:595–598

    Article  CAS  Google Scholar 

  40. Pederson R, Babushkin O, Skystedt F, Warren R (2003) Use of high temperature X-ray diffractometry to study phase transitions and thermal expansion properties in Ti-6Al-4V. Mater Sci Technol 19(11):1533–1538

    Article  CAS  Google Scholar 

  41. Sellers MS, Schultz AJ, Basaran C, Kofke DA (2011) Effect of Cu and Ag solute segregation on β Sn grain boundary diffusivity. J Appl Phys 110:013528

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kundu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission III - Resistance Welding, Solid State Welding, and Allied Joining Process

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, J., Chakraborty, A. & Kundu, S. Bonding pressure effects on characteristics of microstructure, mechanical properties, and mass diffusivity of Ti-6Al-4V and TiAlNb diffusion-bonded joints. Weld World 64, 2129–2143 (2020). https://doi.org/10.1007/s40194-020-00989-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-020-00989-x

Keywords

Navigation