Skip to main content
Log in

Nature of interference between Autler–Townes peaks in generic multi-level system

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this work we present a theoretical frame work to identify the role and the nature of interference between Autler–Townes (AT) peaks (or dressed states) in generic multi-level system. In three-level system, the two AT peaks interfere pair-wise with each other, almost similar to the two-slit interference. In four-level system, the interference between the three AT peaks is also pair-wise only with no higher order of interference analogous to three-slit interference but has a bit more complicated nature of interference. However, in many practical situations in atomic systems only the simple form of interference similar to three-level system dominates. In the three-level system, the nature of interference (i.e. constructive, destructive or no interference) between the two AT peaks is purely determined by the natural decay rate of the states coupled by the control laser(s). However, in four-level system the nature of interference between the two extreme AT peaks can be tuned from constructive to destructive by tuning the power of the control lasers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Imamoǧlu, Phys. Rev. A 40, 2835 (1989).

    Article  ADS  Google Scholar 

  2. Y.Q. Li, M. Xiao, Phys. Rev. A 51, 4959 (1995).

    Article  ADS  Google Scholar 

  3. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005).

    Article  ADS  Google Scholar 

  4. S. Shepherd, D.J. Fulton, M.H. Dunn, Phys. Rev. A 54, 5394 (1996).

    Article  ADS  Google Scholar 

  5. G.S. Agarwal, Phys. Rev. A 55, 2467 (1997).

    Article  ADS  Google Scholar 

  6. T.Y. Abi-Salloum, Phys. Rev. A 81, 053836 (2010).

    Article  ADS  Google Scholar 

  7. C. Tan, G. Huang, J. Opt. Soc. Am. B 31, 704 (2014).

    Article  ADS  Google Scholar 

  8. S. Khan, V. Bharti, V. Natarajan, Phys. Lett. A 380, 4100 (2016).

    Article  ADS  Google Scholar 

  9. P.M. Anisimov, J.P. Dowling, B.C. Sanders, Phys. Rev. Lett. 107, 163604 (2011).

    Article  ADS  Google Scholar 

  10. L. Giner, L. Veissier, B. Sparkes, A.S. Sheremet, A. Nicolas, O.S. Mishina, M. Scherman, S. Burks, I. Shomroni, D.V. Kupriyanov, et al., Phys. Rev. A 87, 013823 (2013).

    Article  ADS  Google Scholar 

  11. L. Hao, Y. Jiao, Y. Xue, X. Han, S. Bai, J. Zhao, G. Raithel, New J. Phys. 20, 073024 (2018).

    Article  ADS  Google Scholar 

  12. J. Liu, J. Wu, Y. Zhang, Y. He, J. Zhang, J. Opt. Soc. Am. B 37, 49 (2020).

    Article  ADS  Google Scholar 

  13. B. Peng, Å.K. Ozdemir, W. Chen, F. Nori, L. Yang, Nature Communications 5, 5082 (2014).

    Article  ADS  Google Scholar 

  14. E. Saglamyurek, T. Hrushevskyi, A. Rastogi, K. Heshami, L.J. LeBlanc, Nat. Photonics 12, 774 (2018).

    Article  ADS  Google Scholar 

  15. A. Rastogi, E. Saglamyurek, T. Hrushevskyi, S. Hubele, L.J. LeBlanc, Phys. Rev. A 100, 012314 (2019).

    Article  ADS  Google Scholar 

  16. U. Sinha, C. Couteau, T. Jennewein, R. Laflamme, G. Weihs, Science 329, 418 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Asad Siddiqui, T. Qureshi, Prog. Theor. Exp. Phys. 2015 (2015). http://oup.prod.sis.lan/ptep/article-pdf/2015/8/083A02/7698190/ptv112.pdf.

  18. A. Sinha, A.H. Vijay, U. Sinha, Sci. Rep. 5, 10304 (2015).

    Article  ADS  Google Scholar 

  19. K.S. Lee, Z. Zhuo, C. Couteau, D. Wilkowski, T. Paterek, Phys. Rev. A 101, 052111 (2020).

    Article  ADS  Google Scholar 

  20. A. Joshi, M. Xiao, Phys. Lett. A 317, 370 (2003).

    Article  ADS  Google Scholar 

  21. M.G. Bason, A.K. Mohapatra, K.J. Weatherill, C.S. Adams, J. Phys. B: At. Mol. Opt. Phys. 42, 075503 (2009).

    Article  ADS  Google Scholar 

  22. Y. Chen, X.G. Wei, B.S. Ham, J. Phys. B: At. Mol. Opt. Phys. 42, 065506 (2009).

    Article  ADS  Google Scholar 

  23. J. Sheng, X. Yang, U. Khadka, M. Xiao, Opt. Express 19, 17059 (2011).

    Article  ADS  Google Scholar 

  24. T. Hong, C. Cramer, W. Nagourney, E.N. Fortson, Phys. Rev. Lett. 94, 050801 (2005).

    Article  ADS  Google Scholar 

  25. J.A. Sedlacek, A. Schwettmann, H. Kubler, R. Low, T. Pfau, J.P. Shaffer, Nat. Phys. 8, 819 (2012).

    Article  Google Scholar 

  26. B. Zhang, J.H. Wu, X.Z. Yan, L. Wang, X.J. Zhang, J.Y. Gao, Opt. Express 19, 12000 (2011).

    Article  ADS  Google Scholar 

  27. A. Ghosh, K. Islam, S. Mondal, D. Bhattacharyya, N. Pal, A. Bandyopadhyay, J. Phys. B: At. Mol. Opt. Phys. 51, 145501 (2018).

    Article  ADS  Google Scholar 

  28. S. Kumar, T. Lauprêtre, F. Bretenaker, F. Goldfarb, R. Ghosh, Phys. Rev. A 88, 023852 (2013).

    Article  ADS  Google Scholar 

  29. F. Leroux, K. Pandey, R. Rehbi, F. Chevy, C. Miniatura, B. Gremaud, D. Wilkowski, Nat. Commun. 9, 3580 (2018).

    Article  ADS  Google Scholar 

  30. Y.X. Hu, C. Miniatura, D. Wilkowski, B. Grémaud, Phys. Rev. A 90, 023601 (2014).

    Article  ADS  Google Scholar 

  31. K. Pandey, C.C. Kwong, M.S. Pramod, D. Wilkowski, Phys. Rev. A 93, 053428 (2016).

    Article  ADS  Google Scholar 

  32. L. Li, H. Guo, F. Xiao, X. Peng, X. Chen, J. Opt. Soc. Am. B 22, 1309 (2005).

    Article  ADS  Google Scholar 

  33. J.R. Morris, B.W. Shore, Phys. Rev. A 27, 906 (1983).

    Article  ADS  Google Scholar 

  34. K. Pandey, Phys. Rev. A 87, 043838 (2013).

    Article  ADS  Google Scholar 

  35. I. Courtillot, A. Quessada-Vial, A. Brusch, D. Kolker, G.D. Rovera, P. Lemonde, Eur. Phys. J. D 33, 161 (2005).

    Article  ADS  Google Scholar 

  36. N.S. Mallick, T.N. Dey, K. Pandey, Preprint arXiv:1703.10492 (2017).

  37. D. Shylla, E.N. Ogaro, K. Pandey, Sci. Rep. 8, 8692 (2018).

    Article  ADS  Google Scholar 

  38. D. Shylla, K. Pandey, Preprint arXiv:1802.09935 (2018).

  39. M.T. Simons, M.D. Kautz, C.L. Holloway, D.A. Anderson, G. Raithel, D. Stack, M.C. St John, W. Su, J. Appl. Phys. 123, 203105 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanhaiya Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyakang’o, E.O., Shylla, D., Indumathi, K. et al. Nature of interference between Autler–Townes peaks in generic multi-level system. Eur. Phys. J. D 74, 187 (2020). https://doi.org/10.1140/epjd/e2020-10187-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10187-3

Keywords

Navigation