Skip to main content

Advertisement

Log in

Prompt \(\gamma \)-ray characteristics from \(^{235}\)U(n, f) at \({\overline{E}}_{n}\) = 1.7 MeV

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In response to nuclear data requests by OECD NEA, we present here the first results with respect to prompt-fission \(\gamma \)-ray spectra characteristics for fast neutrons on \(^{235}\)U. For that we have analyzed previously taken prompt-fission \(\gamma \)-ray data from the reaction \(^{235}\)U(n, f) induced by fast neutrons of average energy \({\overline{E}}_{n}\) = 1.7 MeV and spectral properties were deduced. It was expected that the values would be somewhat higher than for thermal-neutron induced fission of the same system, which at a first glance turned out to be not the case. However, taking the different prompt time windows relative to the coincidence timing resolution between both measurements into account, this discrepancy could be resolved. The results are an average multiplicity \({\overline{M}}_{\gamma }\) = 7.45 ± 0.48 \(\gamma \) rays per fission and an average total \(\gamma \)-ray energy release in fission \({\overline{E}}_{\gamma ,tot}\) = (6.03 ± 0.47) MeV, which includes an additional relative uncertainty of 4% from the time window correction. The corresponding average energy per \(\gamma \) ray is \({\overline{\epsilon }}_{\gamma }\) = (0.81 ± 0.04) MeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availibility Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. M. Lebois, J.N. Wilson, P. Halipré, B. Leniau, I. Matea, A. Oberstedt, S. Oberstedt, D. Verney, Nucl. Instr. Methods Phys. Res. A 735, 145 (2014)

    Article  ADS  Google Scholar 

  2. M. Lebois, J.N. Wilson, P. Halipré, A. Oberstedt, S. Oberstedt, P. Marini, C. Schmitt, S.J. Rose, S. Siem, M. Fallot, A. Porta, A.-A. Zakari, Phys. Rev. C 92, 034618 (2015)

    Article  ADS  Google Scholar 

  3. https://mcnp.lanl.gov

  4. L. Qi, M. Lebois, J.N. Wilson, A. Chatillon, S. Courtin, G. Fruet, G. Georgiev, D.G. Jenkins, B. Laurent, L. Le Meur, A. Maj, P. Marini, I. Matea, L. Morris, V. Nanal, P. Napiorkowski, A. Oberstedt, S. Oberstedt, C. Schmitt, O. Serot, M. Stanoiu, B. Wasilewska, Phys. Rev. C 98, 014612 (2018)

    Article  ADS  Google Scholar 

  5. A. Oberstedt, R. Billnert, S. Oberstedt, Phys. Rev. C 96, 034612 (2017)

    Article  ADS  Google Scholar 

  6. J.-M. Laborie, R. Billnert, G. Bélier, A. Oberstedt, S. Oberstedt, J. Taieb, Phys. Rev. C 98, 054604 (2018)

    Article  ADS  Google Scholar 

  7. S. Agostinelli, and the GEANT4 collaboration, Nucl. Instr. Meth. A 506, 250 (2003)

  8. S. Oberstedt, A. Oberstedt, A. Gatera, A. Göök, F.-J. Hambsch, A. Moens, G. Sibbens, D. Vanleeuw, M. Vidali, Phys. Rev. C 93, 054603 (2016)

    Article  ADS  Google Scholar 

  9. A. Gatera, PhD thesis, Ghent University (2019), to be published

  10. E. Kwan, C.Y. Wu, R.C. Haight, H.Y.Lee, T.A. Bredeweg, AChyzh, M.Devlin, N.Fotiades, J.M. Gostic, R.A. Henderson, M. Jandel, A. Laptev, R.O. Nelson, J.M. OoDonnell, B.A. Perdue, T.N. Taddeucci, J.L. Ullmann, S.A. Wender, Nucl. Instr. Meth. A 688, 55 (2012)

  11. A. Gatera, T. Belgya, W. Geerts, A. Göök, F.-J. Hambsch, M. Lebois, B. Maróti, A. Moens, A. Oberstedt, S. Oberstedt, F. Postelt, L. Qi, L. Szentmiklósi, G. Sibbens, D. Vanleeuw, M. Vidali, F. Zeiser, Phys. Rev. C 95, 064609 (2017)

    Article  ADS  Google Scholar 

  12. L. Qi, J.N. Wilson, M. Lebois, A. Al-Adili, A. Chatillon, D. Choudhury, A. Gatera, G. Georgiev, A. Göök, B. Laurent, A. Maj, I. Matea, A. Oberstedt, S. Oberstedt, S.J. Rose, C. Schmitt, B. Wasilewska, F. Zeiser, EPJ Web of Conf. 169, 00018 (2018)

    Article  Google Scholar 

  13. L. Qi, C. Schmitt, M. Lebois, A. Oberstedt, S. Oberstedt, J.N. Wilson, A. Al-Adili, A. Chatillon, D. Choudhury, A. Gatera, G. Georgiev, A. Göök, B. Laurent, A. Maj, I. Matea, S.J. Rose, B. Wasilewska, F. Zeiser, Eur. Phys. J. A 56, 98 (2020)

    Article  ADS  Google Scholar 

  14. A. Oberstedt, A. Gatera, A. Göök, S. Oberstedt, Eur. Phys. J. A 56, 196 (2020)

    Article  ADS  Google Scholar 

  15. A. Oberstedt, P. Halipré, F.-J. Hambsch, M. Lebois, S. Oberstedt, J.N. Wilson, Phys. Procedia 64, 91 (2015)

    Article  ADS  Google Scholar 

  16. A. Oberstedt, T. Belgya, R. Billnert, R. Borcea, T. Bryś, W. Geerts, A. Göök, F.-J. Hambsch, Z. Kis, T. Martinez, S. Oberstedt, L. Szentmiklósi, K. Takàcs, M. Vidali, Phys. Rev. C 87, 051602(R) (2013)

    Article  ADS  Google Scholar 

  17. I. Stetcu, M.B. Chadwick, T. Kawano, P. Talou, R. Capote, A. Trkov, Nucl. Data Sheets 163, 261 (2020)

    Article  ADS  Google Scholar 

  18. S. Oberstedt, R. Billnert, T. Belgya, T. Bryś, W. Geerts, C. Guerrero, F.-J. Hambsch, Z. Kis, A. Moens, A. Oberstedt, G. Sibbens, L. Szentmiklósi, D. Vanleeuw, M. Vidali, Phys. Rev. C 90, 024618 (2014)

    Article  ADS  Google Scholar 

  19. A. Chyzh, C.Y. Wu, E. Kwan, R.A. Henderson, J.M. Gostic, T.A. Bredeweg, A. Couture, R.C. Haight, A.C. Hayes-Sterbenz, M. Jandel, H.Y. Lee, J.M. OoDonnell, J.L. Ullmann, Phys. Rev. C 87, 034620 (2013)

    Article  ADS  Google Scholar 

  20. A. Chyzh, C.Y. Wu, E. Kwan, R.A. Henderson, T.A. Bredeweg, R.C. Haight, A.C. Hayes-Sterbenz, H.Y. Lee, J.M. OoDonnell, J.L. Ullmann, Phys. Rev. C 90, 014602 (2014)

    Article  ADS  Google Scholar 

  21. V.V. Verbinski, H. Weber, R.E. Sund, Phys. Rev. C 7, 1173 (1973)

    Article  ADS  Google Scholar 

  22. A. Oberstedt, R. Billnert, F.-J. Hambsch, S. Oberstedt, Phys. Rev. C 92, 014618 (2015)

    Article  ADS  Google Scholar 

  23. Nuclear Data High Priority Request List of the NEA (Req. ID: H.3, H.4), www.oecd-nea.org/dbdata/hprl/hprlview.pl?ID=422

Download references

Acknowledgements

The experiment, from which the results have been presented here, was carried out with support from the European Commission within the framework of the ERINDA programme (agreement number 269499), which is hereby gratefully acknowledged. One of the authors (A. O.) acknowledges the support from the Extreme Light Infrastructure Nuclear Physics (ELI-NP) Phase II, a project co-financed by the Romanian Government and the European Union through the European Regional Development Fund-the Competitiveness Operational Programme (1/07.07.2016, COP, ID 1334), with which part of this work had been performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Oberstedt.

Additional information

Communicated by Robert Janssens

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oberstedt, A., Lebois, M., Oberstedt, S. et al. Prompt \(\gamma \)-ray characteristics from \(^{235}\)U(n, f) at \({\overline{E}}_{n}\) = 1.7 MeV. Eur. Phys. J. A 56, 236 (2020). https://doi.org/10.1140/epja/s10050-020-00246-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00246-1

Navigation