Skip to main content
Log in

Security analysis of measurement-device-independent quantum secure direct communication

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum secure direct communication (QSDC) is an important branch of quantum communication that transmits confidential messages directly in a quantum channel without utilizing encryption and decryption. It not only prevents eavesdropping during transmission, but also eliminates the security loophole associated with key storage and management. Recently measurement-device-independent (MDI) QSDC protocols in which the measurement is performed by an untrusted party using imperfect measurement devices have been constructed, and MDI-QSDC eliminates the security loopholes originating from the imperfections in measurement devices so that enable applications of QSDC with current technology. In this paper, we complete the quantitative security analysis of the MDI-QSDC protocols, one based on EPR pairs and one based on single photons. In passing, a security loophole in one of the MDI-QSDC protocols (Niu et al. in Sci Bull 63(20):1345–1350, 2018) is fixed. The security capacity is derived, and its lower bound is given. It is found that the MDI-QSDC secrecy capacity is only slightly lower than that of QSDC utilizing perfect measurement devices. Therefore, QSDC is possible with current measurement devices by sacrificing a small amount in the capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179 (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    ADS  Google Scholar 

  4. Bennett, C.H., Brassard, G., Breidbart, S., Wiesner, S.: Quantum cryptography, or unforgeable subway tokens. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 267–275. Springer, Boston (1983)

    Google Scholar 

  5. Sun, H., Liu, S., Lin, W., Zhang, K.Y., Lv, W., Huang, X., Huo, F., Yang, H., Jenkins, G., Zhao, Q., Huang, W.: Smart responsive phosphorescent materials for data recording and security protection. Nat. Commun. 5, 3601 (2014)

    ADS  Google Scholar 

  6. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    ADS  Google Scholar 

  7. Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state. Opt. Commun. 253(1–3), 15–20 (2005)

    ADS  Google Scholar 

  8. Wang, J., Zhang, Q., Tang, C.J.: Multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 266(2), 732–737 (2006)

    ADS  Google Scholar 

  9. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)

    ADS  Google Scholar 

  10. Chen, S.S., Zhou, L., Zhong, W., Sheng, Y.B.: Three-step three-party quantum secure direct communication. Sci. China Phys. Mech. 61(9), 90312 (2018)

    Google Scholar 

  11. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    ADS  Google Scholar 

  12. Yan, F.L., Zhang, X.Q.: A scheme for secure direct communication using EPR pairs and teleportation. Eur. Phys. J. B 41(1), 75–78 (2004)

    ADS  MathSciNet  Google Scholar 

  13. Liu, Z.H., Chen, H.W., Liu, W.J.: Information leakage problem in efficient bidirectional quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 55(11), 4681–4686 (2016)

    MATH  Google Scholar 

  14. Cao, Z.W., Feng, X.Y., Peng, J.Y., Zeng, G.H., Qi, X.F.: Quantum secure direct communication scheme in the non-symmetric channel with high efficiency and security. Int. J. Theor. Phys. 54(6), 1871–1877 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Wang, S.K., Zha, X.W., Wu, H.: Controlled secure direct communication with seven-qubit entangled states. Int. J. Theor. Phys. 57(1), 48–58 (2018)

    MATH  Google Scholar 

  16. Jin, S., Yan-Xiao, G., Ping, X., Shi-Ning, Z., You-Bang, Z.: Quantum secure direct communication by using three-dimensional hyperentanglement. Commun. Theor. Phys. 56(5), 831 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Xu, G., Xiao, K., Li, Z.P., Niu, X.X., Ryan, M.: Controlled secure direct communication protocol via the three-qubit partially entangled set of states. Comput. Mater. Continua 58(3), 809–827 (2019)

    Google Scholar 

  18. Bebrov, G.: On the generalization and improvement of QSDC efficiency achieved through a quantum channel compression. Quantum Inf. Process. 18(4), 115 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Wang, M.M., Liu, J.L., Gong, L.M.: Semiquantum secure direct communication with authentication based on single-photons. Int. J. Quantum Inf. 17(03), 1950024 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Zhukov, A.A., Kiktenko, E.O., Elistratov, A.A., Pogosov, W.V., Lozovik, Y.E.: Quantum communication protocols as a benchmark for programmable quantum computers. Quantum Inf. Process. 18(1), 31 (2018)

    ADS  MATH  Google Scholar 

  21. Murakami, Y., Nakanishi, M., Yamashita, S., Nakashima, Y., Hagiwara, M.: A Quantum secure direct communication protocol for sending a quantum state and its security analysis. In: Proceedings of the 6th WSEAS International Conference on Information Security and Privacy, pp. 91–97. World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin (2007)

  22. Lu, H., Barbeau, M., Nayak, A.: Keyless semi-quantum point-to-point communication protocol with low resource requirements. Sci. Rep. 9(1), 64 (2019)

    ADS  Google Scholar 

  23. Srikara, S., Thapliyal, K., Pathak, A.: Continuous variable direct secure quantum communication using gaussian states. Quantum Inf. Process. 19(4), 1–15 (2020)

    MathSciNet  Google Scholar 

  24. Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5(9), e16144 (2016)

    Google Scholar 

  25. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)

    ADS  Google Scholar 

  26. Zhu, F., Zhang, W., Sheng, Y., Huang, Y.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62(22), 1519–1524 (2017)

    Google Scholar 

  27. Lum, D.J., Howell, J.C., Allman, M.S., Gerrits, T., Verma, V.B., Nam, S.W., Lupo, C., Lloyd, S.: Quantum enigma machine: experimentally demonstrating quantum data locking. Phys. Rev. A 94(2), 022310–022315 (2016)

    ADS  MathSciNet  Google Scholar 

  28. Shapiro, J.H., Boroson, D.M., Dixon, P.B., Grein, M.E., Hamilton, S.A.: Quantum low probability of intercept. J. Opt. Soc. Am. B 36(3), B41 (2019)

    Google Scholar 

  29. Del Santo, F., Dakić, B.: Two-way communication with a single quantum particle. Phys. Rev. Lett. 120(6), 060503 (2018)

    Google Scholar 

  30. Massa, F., Moqanaki, A., Baumeler, Ä., Del Santo, F., Kettlewell, J.A., Dakić, B., Walther, P.: Experimental two-way communication with one photon. Adv. Quantum Technol. 2(11), 1900050 (2019)

    Google Scholar 

  31. Qi, R., Sun, Z., Lin, Z., Niu, P., Hao, W., Song, L., Huang, Q., Gao, J., Yin, L., Long, G.L.: Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 8(1), 22 (2019)

    ADS  Google Scholar 

  32. CAICT: Research report on the development and application of quantum information technology. Tech. rep. (2019)

  33. Sun, Z., Qi, R., Lin, Z., Yin, L., Long, G., Lu, J.: Design and implementation of a practical quantum secure direct communication system. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6. IEEE (2018)

  34. Sun, Z., Song, L., Huang, Q., Yin, L., Long, G.L., Lu, J., Hanzo, L.: Towards practical quantum secure direct communication: a quantum-memory-free protocol and code design. IEEE Trans. Commun. (2020). https://doi.org/10.1109/TCOMM.2020.3006201

    Article  Google Scholar 

  35. Huang, A., Barz, S., Andersson, E., Makarov, V.: Implementation vulnerabilities in general quantum cryptography. New J. Phys. 20(10), 103016 (2018)

    ADS  Google Scholar 

  36. Makarov, V., Anisimov, A., Skaar, J.: Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A 74(2), 022313 (2006)

    ADS  Google Scholar 

  37. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4(10), 686–689 (2010)

    ADS  Google Scholar 

  38. Niu, P.H., Zhou, Z.R., Lin, Z.S., Sheng, Y.B., Yin, L.G., Long, G.L.: Measurement-device-independent quantum communication without encryption. Sci. Bull. 63(20), 1345–1350 (2018)

    Google Scholar 

  39. Zhou, Z., Sheng, Y., Niu, P., Yin, L., Long, G., Hanzo, L.: Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. 63(3), 230362 (2020)

    Google Scholar 

  40. Gao, Z., Li, T., Li, Z.: Long-distance measurement-device-independent quantum secure direct communication. EPL 125(4), 40004 (2019)

    ADS  Google Scholar 

  41. Zhou, L., Sheng, Y.B., Long, G.L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65(1), 12–20 (2019)

    Google Scholar 

  42. Kiktenko, E.O., Trushechkin, A.S., Lim, C.C.W., Kurochkin, Y.V., Fedorov, A.K.: Symmetric blind information reconciliation for quantum key distribution. Phys. Rev. Appl. 8(4), 044017 (2017)

    ADS  Google Scholar 

  43. Wu, J., Lin, Z., Yin, L., Long, G.L.: Security of quantum secure direct communication based on Wyner’s wiretap channel theory. Quantum Eng. 1(4), e26 (2019)

    Google Scholar 

  44. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    ADS  Google Scholar 

  45. Csiszár, I., Korner, J.: Broadcast channels with confidential messages. IEEE Trans. Inform. Theory 24(3), 339–348 (1978)

    MathSciNet  MATH  Google Scholar 

  46. Renner, R.: Symmetry of large physical systems implies independence of subsystems. Nat. Phys. 3(9), 645–649 (2007)

    Google Scholar 

  47. Kraus, B., Gisin, N., Renner, R.: Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication. Phys. Rev. Lett. 95(8), 080501 (2005)

    ADS  Google Scholar 

  48. Holevo, A.S.: Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Peredachi Inf. 9(3), 3–11 (1973)

    MATH  Google Scholar 

  49. Das, N., Paul, G.: Improving the security of “ measurement-device-independent quantum communication without encryption”. arXiv preprint arXiv:2006.05263 (2020)

  50. Jozsa, R., Schlienz, J.: Distinguishability of states and von Neumann entropy. Phys. Rev. A 62(1), 012301 (2000)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFA0303700), the Key R&D Program of Guangdong province (2018B030325002), the Tsinghua University Initiative Scientific Research Program, the National Natural Science Foundation of China under Grants No. 61727801, No. 11974205, and No. 11774197, and in part by the Beijing Advanced Innovation Center for Future Chip (ICFC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Lu Long.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Derivation details of secrecy capacity

Derivation details of secrecy capacity

In this appendix, the derivation details of secrecy capacity are presented.

1.1 MDI-TS protocol

For MDI-TS protocol, the derivation focuses on the mutual information between Alice and Eve, i.e., the Holevo bound in Eq. (6) in the main body, which can be simplified through the subadditivity of entropy.

The first term on the right hand side is the von Nuemann entropy of \(\sum _{\zeta } p_{\zeta } \rho _{ABE}^{\zeta } \), which is a result of the cover operation followed with the encoding operation. It is worth noting that the above operations can fully mix the system A and B, respectively, or in other words, they are totally depolarizing channels with the following form,

$$\begin{aligned} \mathcal {N}(\rho ) = \frac{1}{4}(\rho + \sigma _x \rho \sigma _x + \sigma _z \rho \sigma _z + \sigma _y \rho \sigma _y). \end{aligned}$$
(11)

Take the purified state \(|\varPhi _{ABE}\rangle \) as input, we have

$$\begin{aligned} \mathcal {N}_A \circ \mathcal {N}_B (|\varPhi _{ABE}\rangle \langle \varPhi _{ABE}|) = \rho _{AB}^{\mathrm {mix}} \otimes \mathrm {Tr}_{AB}(|\varPhi _{ABE}\rangle \langle \varPhi _{ABE}|), \end{aligned}$$
(12)

where \(|\varPhi _{ABE}\rangle = \sum _i \sqrt{\delta _i} | \varPsi _i \rangle |E_i \rangle \) and \(\rho _{AB}^{\mathrm {mix}}\) is the fully mixed state of system AB. The result of the partial trace is

$$\begin{aligned} \mathrm {Tr}_{AB} \left( |\varPhi _{ABE}\rangle \langle \varPhi _{ABE}| \right) = \sum _i \delta _i |E_i \rangle \langle E_i |. \end{aligned}$$
(13)

Then the first term on the right-hand side of Eq. (6) is

$$\begin{aligned} \begin{aligned} S\left( \sum _{\zeta } p_{\zeta } \rho _{ABE}^{\zeta } \right)&= S\left( \rho _{AB}^{\mathrm {mix}} \right) + S\left( \sum _i \delta _i |E_i \rangle \langle E_i |\right) \\&= 2 + H(\left\{ \delta _i \right\} )\\&= 2 + h(\delta _3 +\delta _4) +(\delta _1+\delta _2)h\left( \frac{\delta _2}{\delta _1+\delta _2}\right) + (\delta _3 + \delta _4)h\left( \frac{\delta _4}{\delta _3+\delta _4}\right) \\&\le 2 + h(\epsilon _z) + h(\epsilon _x), \end{aligned} \end{aligned}$$
(14)

where \(\epsilon _z = \delta _3 + \delta _4\), \(\epsilon _x = \delta _2 +\delta _4\).

Therefore, the mutual information of A and E is

$$\begin{aligned} I(A:E) \le h(\epsilon _z) + h(\epsilon _x). \end{aligned}$$
(15)

The definition of secrecy capacity leads to Eq. (8) in the main body.

1.2 MDI-DL04 protocol

The derivation for secrecy capacity of MDI-DL04 is similar with Ref. [43]. We also present it here to make this appendix self-contained. For MDI-DL04 protocol, the state \(\rho _{AE}\) has the form

$$\begin{aligned} \rho _{AE}= \mathrm {Tr}_B(| \psi _{ABE} \rangle \langle \psi _{ABE}|) = \frac{1}{2} ( P_{|\varphi _1\rangle } + P_{|\varphi _2 \rangle }), \end{aligned}$$
(16)

where \(P_{|\cdot \rangle }\) is the projection operator of state \(|\cdot \rangle \) and we have defined:

$$\begin{aligned} \begin{aligned} |\varphi _1 \rangle&\equiv |0\rangle _A (\sqrt{\delta _3}|E_3\rangle + \sqrt{\delta _4}|E_4\rangle ) \\&\quad + |1\rangle _A ( \sqrt{\delta _2}|E_2\rangle - \sqrt{\delta _1}|E_1\rangle ), \\ |\varphi _2 \rangle&\equiv |0\rangle _A ( \sqrt{\delta _1}|E_1\rangle + \sqrt{\delta _2}|E_2\rangle ) \\&\quad + |1\rangle _A ( \sqrt{\delta _4}|E_4\rangle - \sqrt{\delta _3}|E_3\rangle ). \end{aligned} \end{aligned}$$
(17)

The encoded states are

$$\begin{aligned} \begin{aligned} \rho _{AE}&= \frac{1}{2}(P_{|\varphi _1 \rangle } + P_{|\varphi _1 \rangle }),\\ \sigma _u\rho _{AE} \sigma _u&= \frac{1}{2}(P_{\sigma _u|\varphi _1 \rangle } + P_{\sigma _u|\varphi _2}\rangle ). \end{aligned} \end{aligned}$$
(18)

Now we consider \(\sigma _u = i \sigma _y\) for brevity, and other situations follow in a similar way. The Holevo bound of AE is

$$\begin{aligned} \begin{aligned} I(A:E)&\le S \left( \sum _{k} {p_k \rho _{AE}^k} \right) - \sum _{k} {p_k S \left( \rho _{AE}^k \right) }. \end{aligned} \end{aligned}$$
(19)

The Gram matrix method [50] is used to calculate the first term, and the Gram matrix of \(\sum _{k} p_k \rho _{AE}^k\) is

$$\begin{aligned} \mathbf {G} = \frac{1}{4}\begin{bmatrix} 1 &{} 0 &{} 0 &{} \delta _1-\delta _2-\delta _3+\delta _4 \\ 0 &{} 1 &{} -\delta _1+\delta _2+\delta _3-\delta _4 &{} 0 \\ 0 &{} -\delta _1+\delta _2+\delta _3-\delta _4 &{} 1 &{} 0 \\ \delta _1-\delta _2-\delta _3+\delta _4 &{} 0 &{} 0 &{} 1 \end{bmatrix}. \end{aligned}$$
(20)

Then we have the eigenvalues (noting that \(\delta _1-\delta _2-\delta _3+\delta _4 = 1 - 2\epsilon _y\))

$$\begin{aligned} \frac{1}{4} \times \begin{pmatrix} &{} 1+(1 - 2\epsilon _y)\\ &{} 1+(1 - 2\epsilon _y)\\ &{} 1-(1 - 2\epsilon _y)\\ &{} 1-(1 - 2\epsilon _y) \end{pmatrix}, \end{aligned}$$
(21)

and the entropy \(S\left( \sum _{k} p_k \rho _{AE}^k\right) = 1 + h(\epsilon _y)\). Then we have

$$\begin{aligned} I(A:E) \le h(\epsilon _y), \end{aligned}$$
(22)

and the secrecy capacity in Eq. (10) in the main body follows naturally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, PH., Wu, JW., Yin, LG. et al. Security analysis of measurement-device-independent quantum secure direct communication. Quantum Inf Process 19, 356 (2020). https://doi.org/10.1007/s11128-020-02840-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02840-0

Keywords

Navigation