Skip to main content
Log in

Secondary metabolites as plant defensive strategy: a large role for small molecules in the near root region

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The roles of plant roots are not merely limited to the provision of mechanical support, nutrients and water, but also include more specific roles, such as the capacity to secrete diverse chemical substances. These metabolites are actively secreted in the near root and play specific and significant functions in plant defense and communication. In this review, we detail the various preventive roles of these powerful substances in the rhizosphere with a perspective as to how plants recruit microbes as a preventive measure against other pathogenic microbes, also, briefly about how the rhizosphere can repel insect pests, and how these chemical substances alter microbial dynamics and enhance symbiotic relationships. We also highlight the need for more research in this area to detail the mode of action and quantification of these compounds in the environment and their roles in some important biological processes in microorganisms and plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BXs:

Benzoxazinoids

PGPB:

Plant growth-promoting bacteria

ACC deaminase:

1-Aminocyclopane-1-carboxylate (ACC) deaminase

PGP:

Plant growth-promoting

LOCs:

Lipo-chitooligosaccharides

PHB:

Polyhydroxybutyrate

EPS:

Exopolysaccharides

References

  • Abdel-Lateif K, Bogusz D, Hocher V (2012) The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signal Behav 7(6):636–641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aboody MSA, Mickymaray S (2020) Anti-fungal efficacy and mechanisms of flavonoids. Antibiotics 9(2):45

    PubMed Central  Google Scholar 

  • Afifi A-AM, El-Laithy AY, Shehata SA, El-Saiedy E-SM (2010) Resistance of strawberry plants against the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). In: Gupta VK, Pandey A (eds) Trends in acarology. Springer, pp 505–507

  • Ahmad N, Bibi Y, Raza I, Zahara K, Khalid N, Bashir T, Tabassum S (2015) Traditional uses and pharmacological properties of Alhagi maurorum: a review. Asian Pac J Trop Dis 5(11):856–861

    Google Scholar 

  • Ajilogba CF, Babalola OO (2016) RAPD profiling of Bacillus spp. with PGPR potential and their effects on mineral composition of tomatoes. J Hum Ecol 56(1–2):42–54

    Google Scholar 

  • Akiyama K, Matsuzaki K-i, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435(7043):824–827

    CAS  PubMed  Google Scholar 

  • Alawiye TT, Babalola OO (2019) Bacterial diversity and community structure in typical plant rhizosphere. Diversity 11(10):179

    CAS  Google Scholar 

  • Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol 66:161–186

    CAS  PubMed  Google Scholar 

  • Ali JG, Alborn HT, Stelinski LL (2010) Subterranean herbivore-induced volatiles released by citrus roots upon feeding by Diaprepes abbreviatus recruit entomopathogenic nematodes. J Chem Ecol 36(4):361–368

    CAS  PubMed  Google Scholar 

  • Amborabé B-E, Fleurat-Lessard P, Chollet J-F, Roblin G (2002) Antifungal effects of salicylic acid and other benzoic acid derivatives towards Eutypa lata: structure–activity relationship. Plant Physiol Biochem 40(12):1051–1060

    Google Scholar 

  • Amoo AE, Babalola OO (2019) Impact of land use on bacterial diversity and community structure in temperate pine and indigenous forest soils. Diversity 11(11):217

    CAS  Google Scholar 

  • Atanasova-Penichon V, Barreau C, Richard-Forget F (2016) Antioxidant secondary metabolites in cereals: potential involvement in resistance to Fusarium and mycotoxin accumulation. Front Microbiol 7:566

    PubMed  PubMed Central  Google Scholar 

  • Báidez A, Gómez P, Del Río J, Ortuño A (2006) Antifungal capacity of major phenolic compounds of Olea europaea L. against Phytophthora megasperma Drechsler and Cylindrocarpon destructans (Zinssm.) Scholten. Physiol Mol Plant Pathol 69(4–6):224–229

    Google Scholar 

  • Barnes J, Putnam A (1983) Rye residues contribute weed suppression in no-tillage cropping systems. J Chem Ecol 9(8):1045–1057

    CAS  PubMed  Google Scholar 

  • Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defence mechanisms. New Phytol 127(4):617–633

    CAS  PubMed  Google Scholar 

  • Block AK, Vaughan MM, Schmelz EA, Christensen SA (2019) Biosynthesis and function of terpenoid defense compounds in maize (Zea mays). Planta 249(1):21–30

    CAS  PubMed  Google Scholar 

  • Brigham LA, Michaels PJ, Flores HE (1999) Cell-specific production and antimicrobial activity of naphthoquinones in roots of Lithospermum erythrorhizon. Plant Physiol 119(2):417–428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Canarini A, Wanek W, Merchant A, Richter A, Kaiser C (2019) Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front Plant Sci 10:157

    PubMed  PubMed Central  Google Scholar 

  • Caruso F, Mendoza L, Castro P, Cotoras M, Aguirre M, Matsuhiro B, Isaacs M, Rossi M, Viglianti A, Antonioletti R (2011) Antifungal activity of resveratrol against Botrytis cinerea is improved using 2-furyl derivatives. PLoS ONE 6(10):e25421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L (2010) Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329(1–2):1–25

    CAS  Google Scholar 

  • Chen F, Ro D-K, Petri J, Gershenzon J, Bohlmann J, Pichersky E, Tholl D (2004) Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiol 135(4):1956–1966

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Cromer BA, Lynch JW (2009) Molecular determinants of β-carboline inhibition of the glycine receptor. J Neurochem 110(5):1685–1694

    CAS  PubMed  Google Scholar 

  • Choudhary S, Kumar R, Dalal U, Tomar S, Reddy SN (2020) Green synthesis of nanometal impregnated biomass-antiviral potential. Mater Sci Eng C 112:110934

    CAS  Google Scholar 

  • Cotton TA, Pétriacq P, Cameron DD, Al Meselmani M, Schwarzenbacher R, Rolfe SA, Ton J (2019) Metabolic regulation of the maize rhizobiome by benzoxazinoids. ISME J 13(7):1647–1658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crespo E, Hordijk CA, de Graaf RM, Samudrala D, Cristescu SM, Harren FJ, van Dam NM (2012) On-line detection of root-induced volatiles in Brassica nigra plants infested with Delia radicum L. root fly larvae. Phytochemistry 84:68–77

    CAS  PubMed  Google Scholar 

  • D’Amelia L, Dell’Aversana E, Woodrow P, Ciarmiello LF, Carillo P (2018a) Metabolomics for crop improvement against salinity stress. In: Salinity responses and tolerance in plants, vol 2. Springer, pp 267–287

  • D’Amelia V, Aversano R, Chiaiese P, Carputo D (2018b) The antioxidant properties of plant flavonoids: their exploitation by molecular plant breeding. Phytochem Rev 17(3):611–625

    Google Scholar 

  • Dafoe NJ, Thomas JD, Shirk PD, Legaspi ME, Vaughan MM, Huffaker A, Teal PE, Schmelz EA (2013) European corn borer (Ostrinia nubilalis) induced responses enhance susceptibility in maize. PLoS ONE 8(9):e73394

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Lamo FJ, Takken FL (2020) Biocontrol by Fusarium oxysporum using endophyte-mediated resistance. Front Plant Sci 11:1–15

    Google Scholar 

  • de Boer W, Li X, Meisner A, Garbeva P (2019) Pathogen suppression by microbial volatile organic compounds in soils. FEMS Microbiol Ecol 95(8):fiz105

    PubMed  Google Scholar 

  • de Jesus JL, Varela RM, Molinillo JMG, Din ZU, Gualtieri SCJ, Rodrigues-Filho E, Macías FA (2016) Allelopathy of bracken fern (Pteridium arachnoideum): new evidence from green fronds, litter, and soil. PLoS ONE 11(8):e0161670

    Google Scholar 

  • de Vries S, von Dahlen JK, Schnake A, Ginschel S, Schulz B, Rose LE (2018) Broad-spectrum inhibition of Phytophthora infestans by fungal endophytes. FEMS Microbiol Ecol 94(4):fiy037

    PubMed Central  Google Scholar 

  • De Coninck B, Timmermans P, Vos C, Cammue BP, Kazan K (2015) What lies beneath: belowground defense strategies in plants. Trends Plant Sci 20(2):91–101

    PubMed  Google Scholar 

  • Dolman AM (2014) 1200801. Macrophyte effects on algal turbidity in subtropical versus temperate lakes: a comment on Wang et al. (2014). Freshw Biol 59(12):2656–2658

    CAS  Google Scholar 

  • Dong L, Li X, Huang L, Gao Y, Zhong L, Zheng Y, Zuo Y (2014) Lauric acid in crown daisy root exudate potently regulates root-knot nematode chemotaxis and disrupts Mi-flp-18 expression to block infection. J Exp Bot 65(1):131–141

    CAS  PubMed  Google Scholar 

  • el Zahar Haichar F, Santaella C, Heulin T, Achouak W (2014) Root exudates mediated interactions belowground. Soil Biol Biochem 77:69–80

    Google Scholar 

  • Enebe MC, Babalola OO (2018) The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Appl Microbiol Biotechnol 102(18):7821–7835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Erb M, Lu J (2013) Soil abiotic factors influence interactions between belowground herbivores and plant roots. J Exp Bot 64(5):1295–1303

    CAS  PubMed  Google Scholar 

  • Falcone Ferreyra ML, Rius S, Casati P (2012) Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 3:222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang W, Leger RJS (2010) Mrt, a gene unique to fungi, encodes an oligosaccharide transporter and facilitates rhizosphere competency in Metarhizium robertsii. Plant Physiol 154(3):1549–1557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferry A, Dugravot S, Delattre T, Christides J-P, Auger J, Bagnères A-G, Poinsot D, Cortesero A-M (2007) Identification of a widespread monomolecular odor differentially attractive to several Delia radicum ground-dwelling predators in the field. J Chem Ecol 33(11):2064–2077

    CAS  PubMed  Google Scholar 

  • Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15(10):579–590

    CAS  PubMed  Google Scholar 

  • Friebe A, Klever W, Sikora R (2012) Allelochemicals in root exudates. Phytochem Signals Plant Microbe Interact 32:71

    Google Scholar 

  • Fu L, Penton CR, Ruan Y, Shen Z, Xue C, Li R, Shen Q (2017) Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biol Biochem 104:39–48

    CAS  Google Scholar 

  • Fürstenberg-Hägg J, Zagrobelny M, Bak S (2013) Plant defense against insect herbivores. Int J Mol Sci 14(5):10242–10297

    PubMed  PubMed Central  Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root–rhizosphere signalling: opportunities and challenges for improving plant–microbe interactions. J Exp Bot 63(9):3429–3444

    CAS  PubMed  Google Scholar 

  • Hassan MZ, Osman H, Ali MA, Ahsan MJ (2016) Therapeutic potential of coumarins as antiviral agents. Eur J Med Chem 123:236–255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Havlíčková H, Cvikrová M, Eder J (1996) Phenolic acids in wheat cultivars in relation to plant suitability for and response to cereal aphids/Phenolsäuren in Weizensorten im Zusammenhang mit ihrer Eignung als Wirt und ihre Reaktion auf Blattläuse. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/J Plant Dis Prot 103:535–542

    Google Scholar 

  • Hu L, Robert CA, Cadot S, Zhang X, Ye M, Li B, Manzo D, Chervet N, Steinger T, Van Der Heijden MG (2018) Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun 9(1):1–13

    Google Scholar 

  • Huang X-F, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92(4):267–275

    Google Scholar 

  • Islam W, Adnan M, Tayyab M, Hussain M, Islam SU (2018) Phyto-metabolites; an impregnable shield against plant viruses. Nat Product Commun 13(1):1934578X1801300131

    CAS  Google Scholar 

  • Ito S-i, Ihara T, Tamura H, Tanaka S, Ikeda T, Kajihara H, Dissanayake C, Abdel-Motaal FF, El-Sayed MA (2007) α-Tomatine, the major saponin in tomato, induces programmed cell death mediated by reactive oxygen species in the fungal pathogen Fusarium oxysporum. FEBS Lett 581(17):3217–3222

    CAS  PubMed  Google Scholar 

  • Jenkins JN, Hedin P, Parrott W, McCarty J Jr, White W (1983) Cotton allelochemics and growth of tobacco budworm larvae 1. Crop Sci 23(6):1195–1198

    CAS  Google Scholar 

  • Ke S, Fang W, Huang W, Zhang Z, Shi L, Wan Z, Wang K, Cao C, Huang D (2020) Sulfur-containing natural hinduchelins derivatives as potential antifungal agents against Rhizoctonia solani. Bioorg Med Chem Lett 30:127245

    CAS  PubMed  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333(6044):880–882

    CAS  PubMed  Google Scholar 

  • Kleinheinz G, Bagley S, John WS, Rughani J, McGinnis G (1999) Characterization of alpha-pinene-degrading microorganisms and application to a bench-scale biofiltration system for VOC degradation. Arch Environ Contam Toxicol 37(2):151–157

    CAS  PubMed  Google Scholar 

  • Kramshøj M, Albers CN, Svendsen SH, Björkman MP, Lindwall F, Björk RG, Rinnan R (2019) Volatile emissions from thawing permafrost soils are influenced by meltwater drainage conditions. Glob Change Biol 25(5):1704–1716

    Google Scholar 

  • Kujur A, Kumar A, Yadav A, Prakash B (2020) Antifungal and aflatoxin B1 inhibitory efficacy of nanoencapsulated Pelargonium graveolens L. essential oil and its mode of action. LWT 130:109619

    CAS  Google Scholar 

  • Larsson S, Wirén A, Lundgren L, Ericsson T (1986) Effects of light and nutrient stress on leaf phenolic chemistry in Salix dasyclados and susceptibility to Galerucella lineola (Coleoptera). Oikos 47:205–210

    CAS  Google Scholar 

  • Ling N, Zhang W, Wang D, Mao J, Huang Q, Guo S, Shen Q (2013) Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f. sp. niveum. PLoS ONE 8(5):e63383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Kohlen W, Lillo A, den Camp RO, Ivanov S, Hartog M, Limpens E, Jamil M, Smaczniak C, Kaufmann K (2011) Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell 23(10):3853–3865

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Qu Y-K, Wang A-M, Yu Y-B, Yang W-P, Lv F, Nie Q (2019) Effects of carotenoids on the growth performance, biochemical parameters, immune responses and disease resistance of yellow catfish (Pelteobagrus fulvidraco) under high-temperature stress. Aquaculture 503:293–303

    CAS  Google Scholar 

  • López-Gámez G, Elez-Martínez P, Martín-Belloso O, Soliva-Fortuny R (2020) Enhancing phenolic content in carrots by pulsed electric fields during post-treatment time: effects on cell viability and quality attributes. Innov Food Sci Emerg Technol 59:102252

    Google Scholar 

  • Macías FA, Galindo JL, García-Díaz MD, Galindo JC (2008) Allelopathic agents from aquatic ecosystems: potential biopesticides models. Phytochem Rev 7(1):155–178

    Google Scholar 

  • Mafu S, Ding Y, Murphy KM, Yaacoobi O, Addison JB, Wang Q, Shen Z, Briggs SP, Bohlmann J, Castro-Falcon G (2018) Discovery, biosynthesis and stress-related accumulation of dolabradiene-derived defenses in maize. Plant Physiol 176(4):2677–2690

    CAS  PubMed  PubMed Central  Google Scholar 

  • Makowska-Grzyska M, Kim Y, Gorla SK, Wei Y, Mandapati K, Zhang M, Maltseva N, Modi G, Boshoff HI, Gu M (2015) Mycobacterium tuberculosis IMPDH in complexes with substrates, products and antitubercular compounds. PLoS ONE 10(10):e0138976

    PubMed  PubMed Central  Google Scholar 

  • Masamune T, Anetai M, Takasugi M, Katsui N (1982) Isolation of a natural hatching stimulus, glycinoeclepin A, for the soybean cyst nematode. Nature 297(5866):495–496

    CAS  Google Scholar 

  • Mendes LW, Kuramae EE, Navarrete AA, Van Veen JA, Tsai SM (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J 8(8):1577–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19(10):16240–16265

    PubMed  PubMed Central  Google Scholar 

  • Mikić S, Ahmad S (2018) Benzoxazinoids-protective secondary metabolites in cereals: biochemistry and genetic control. Ratarstvo i povrtarstvo 55(1):39–48

    Google Scholar 

  • Mommer L, Kirkegaard J, van Ruijven J (2016) Root–root interactions: towards a rhizosphere framework. Trends Plant Sci 21(3):209–217

    CAS  PubMed  Google Scholar 

  • Neal AL, Ahmad S, Gordon-Weeks R, Ton J (2012) Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS ONE 7(4):e35498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nisar N, Li L, Lu S, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Mol Plant 8(1):68–82

    CAS  PubMed  Google Scholar 

  • Olanrewaju OS, Ayangbenro AS, Glick BR, Babalola OO (2019) Plant health: feedback effect of root exudates–rhizobiome interactions. Appl Microbiol Biotechnol 103(3):1155–1166

    CAS  PubMed  Google Scholar 

  • Ortuño A, Díaz L, Alvarez N, Porras I, García-Lidón A, Del Rio J (2011) Comparative study of flavonoid and scoparone accumulation in different Citrus species and their susceptibility to Penicillium digitatum. Food Chem 125(1):232–239

    Google Scholar 

  • Pagare S, Bhatia M, Tripathi N, Pagare S, Bansal Y (2015) Secondary metabolites of plants and their role: overview. Curr Trends Biotechnol Pharm 9(3):293–304

    Google Scholar 

  • Palla MS, Guntuku GS, Muthyala MKK, Pingali S, Sahu PK (2018) Isolation and molecular characterization of antifungal metabolite producing actinomycete from mangrove soil. Beni-Suef Univ J Basic Appl Sci 7(2):250–256

    Google Scholar 

  • Pandey V, Awasthi M, Singh S, Tiwari S, Dwivedi U (2017) A comprehensive review on function and application of plant peroxidases. Biochem Anal Biochem 6(308):1–16

    Google Scholar 

  • Papadopoulou K, Melton R, Leggett M, Daniels M, Osbourn A (1999) Compromised disease resistance in saponin-deficient plants. Proc Natl Acad Sci 96(22):12923–12928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pascale A, Proietti S, Pantelides IS, Stringlis IA (2020) Modulation of the root microbiome by plant molecules: the basis for targeted disease suppression and plant growth promotion. Front Plant Sci 10:1741

    PubMed  PubMed Central  Google Scholar 

  • Pavela R (2014) Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) larvae. Ind Crops Prod 60:247–258

    CAS  Google Scholar 

  • Phillips D, Tsai S (1992) Flavonoids as plant signals to rhizosphere microbes. Mycorrhiza 1(2):55–58

    CAS  Google Scholar 

  • Qi J, Ul Malook S, Shen G, Gao L, Zhang C, Li J, Zhang J, Wang L, Wu J (2018) Current understanding of maize and rice defense against insect herbivores. Plant Divers 40(4):189–195

    PubMed  PubMed Central  Google Scholar 

  • Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, Köte M, Nielsen J, Eberl L, Givskov M (2005) Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187(5):1799–1814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raza W, Yuan J, Ling N, Huang Q, Shen Q (2015) Production of volatile organic compounds by an antagonistic strain Paenibacillus polymyxa WR-2 in the presence of root exudates and organic fertilizer and their antifungal activity against Fusarium oxysporum f. sp. niveum. Biol Control 80:89–95

    CAS  Google Scholar 

  • Reinhold-Hurek B, Bünger W, Burbano CS, Sabale M, Hurek T (2015) Roots shaping their microbiome: global hotspots for microbial activity. Annu Rev Phytopathol 53:403–424

    CAS  PubMed  Google Scholar 

  • Robert CA, Veyrat N, Glauser G, Marti G, Doyen GR, Villard N, Gaillard MD, Köllner TG, Giron D, Body M (2012) A specialist root herbivore exploits defensive metabolites to locate nutritious tissues. Ecol Lett 15(1):55–64

    PubMed  Google Scholar 

  • Ruiz-Sola MÁ, Arbona V, Gómez-Cadenas A, Rodríguez-Concepción M, Rodríguez-Villalón A (2014) A root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in Arabidopsis. PLoS ONE 9(3):e90765

    PubMed  PubMed Central  Google Scholar 

  • Sablon L, Dickens JC, Haubruge É, Verheggen FJ (2013) Chemical ecology of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), and potential for alternative control methods. Insects 4(1):31–54

    Google Scholar 

  • Sánchez-Pérez R, Jørgensen K, Olsen CE, Dicenta F, Møller BL (2008) Bitterness in almonds. Plant Physiol 146(3):1040–1052

    PubMed  PubMed Central  Google Scholar 

  • Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23(1):25–41

    CAS  PubMed  Google Scholar 

  • Schenk H, Driessen RA, de Gelder R, Goubitz K, Nieboer H, Brüggemann-Rotgans IE, Diepenhorst P (1999) Elucidation of the structure of Solanoeclepin A, a natural hatching factor of potato and tomato cyst nematodes, by single-crystal X-ray diffraction. Croat Chem Acta 72(2–3):593–606

    CAS  Google Scholar 

  • Schmelz EA, Kaplan F, Huffaker A, Dafoe NJ, Vaughan MM, Ni X, Rocca JR, Alborn HT, Teal PE (2011) Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize. Proc Natl Acad Sci 108(13):5455–5460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith OP (2013) Allelopathic Potential of the Invasive Alien Himalayan Balsam (Impatiens glandulifera Royle). https://pearl.plymouth.ac.uk/bitstream/handle/10026.1/1592/2013smith10038185phd.pdf.pdf?sequence=1

  • Sohrabi R, Huh J-H, Badieyan S, Rakotondraibe LH, Kliebenstein DJ, Sobrado P, Tholl D (2015) In planta variation of volatile biosynthesis: an alternative biosynthetic route to the formation of the pathogen-induced volatile homoterpene DMNT via triterpene degradation in Arabidopsis roots. Plant Cell 27(3):874–890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sturz A, Christie B (2003) Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil Tillage Res 72(2):107–123

    Google Scholar 

  • Sugiyama A (2019) The soybean rhizosphere: metabolites, microbes, and beyond—a review. J Adv Res 19:67–73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szoboszlay M, White-Monsant A, Moe LA (2016) The effect of root exudate 7,4′-dihydroxyflavone and naringenin on soil bacterial community structure. PLoS ONE 11(1):e0146555

    PubMed  PubMed Central  Google Scholar 

  • Tatsumi K, Yano M, Kaminade K, Sugiyama A, Sato M, Toyooka K, Aoyama T, Sato F, Yazaki K (2016) Characterization of shikonin derivative secretion in Lithospermum erythrorhizon hairy roots as a model of lipid-soluble metabolite secretion from plants. Front Plant Sci 7:1066

    PubMed  PubMed Central  Google Scholar 

  • Townsend C, Ebizuka Y (2010) Natural products structural diversity-I secondary metabolites: organization and biosynthesis. Elsevier, England

    Google Scholar 

  • Uarrota VG, Severino RB, Maraschin M (2011) Maize landraces (Zea mays L.): a new prospective source for secondary metabolite production. Int J Agric Res 6(3):218–226

    CAS  Google Scholar 

  • van Dam NM, Bouwmeester HJ (2016) Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci 21(3):256–265

    PubMed  Google Scholar 

  • Vaughan MM, Tholl D, Tokuhisa JG (2011) An aeroponic culture system for the study of root herbivory on Arabidopsis thaliana. Plant Methods 7(1):5

    PubMed  PubMed Central  Google Scholar 

  • Vaughan MM, Wang Q, Webster FX, Kiemle D, Hong YJ, Tantillo DJ, Coates RM, Wray AT, Askew W, O’Donnell C (2013) Formation of the unusual semivolatile diterpene rhizathalene by the Arabidopsis class I terpene synthase TPS08 in the root stele is involved in defense against belowground herbivory. Plant Cell 25(3):1108–1125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X-Y, Xie J (2020) Assessment of metabolic changes in Acinetobacter johnsonii and Pseudomonas fluorescens co-culture from bigeye tuna (Thunnus obesus) spoilage by ultra-high-performance liquid chromatography-tandem mass spectrometry. LWT 123:109073

    CAS  Google Scholar 

  • Wang Y-H, Zhang Z-K, Yang F-M, Sun Q-Y, He H-P, Di Y-T, Mu S-Z, Lu Y, Chang Y, Zheng Q-T (2007) Benzylphenethylamine alkaloids from Hosta plantaginea with inhibitory activity against tobacco mosaic virus and acetylcholinesterase. J Nat Products 70(9):1458–1461

    CAS  Google Scholar 

  • Wang R, Wu T, Dai W, Liu H, Zhao J, Wang X, Huang F, Wang Z, Shi C (2015) Effects of straw return on C2–C5 non-methane hydrocarbon (NMHC) emissions from agricultural soils. Atmos Environ 100:210–217

    CAS  Google Scholar 

  • Weidenhamer JD, Callaway RM (2010) Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. J Chem Ecol 36(1):59–69

    CAS  PubMed  Google Scholar 

  • Weissteiner S, Huetteroth W, Kollmann M, Weißbecker B, Romani R, Schachtner J, Schütz S (2012) Cockchafer larvae smell host root scents in soil. PLoS ONE 7(10):e45827

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu T, Cheng D, He M, Pan S, Yao X, Xu X (2014) Antifungal action and inhibitory mechanism of polymethoxylated flavones from Citrus reticulata Blanco peel against Aspergillus niger. Food Control 35(1):354–359

    CAS  Google Scholar 

  • Xie X, Yoneyama K, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathol 48:93–117

    CAS  PubMed  Google Scholar 

  • Yan X-H, Chen J, Di Y-T, Fang X, Dong J-H, Sang P, Wang Y-H, He H-P, Zhang Z-K, Hao X-J (2010) Anti-tobacco mosaic virus (TMV) quassinoids from Brucea javanica (L.) Merr. J Agric Food Chem 58(3):1572–1577

    CAS  PubMed  Google Scholar 

  • Yang X, Owens TG, Scheffler BE, Weston LA (2004) Manipulation of root hair development and sorgoleone production in sorghum seedlings. J Chem Ecol 30(1):199–213

    CAS  PubMed  Google Scholar 

  • Yang G, Zhou B, Zhang X, Zhang Z, Wu Y, Zhang Y, Lü S, Zou Q, Gao Y, Teng L (2016) Effects of tomato root exudates on Meloidogyne incognita. PLoS ONE 11(4):e0154675

    PubMed  PubMed Central  Google Scholar 

  • Yarzábal LA, Chica EJ (2019) Role of rhizobacterial secondary metabolites in crop protection against agricultural pests and diseases. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, pp 31–53

  • Zaynab M, Fatima M, Abbas S, Sharif Y, Umair M, Zafar MH, Bahadar K (2018) Role of secondary metabolites in plant defense against pathogens. Microb Pathog 124:198–202

    CAS  PubMed  Google Scholar 

  • Zerbe P (2015) Small molecules with big impact: terpenoid phytoalexins as key factors in maize stress tolerance. Plant Cell Environ 38(11):2193–2194

    PubMed  Google Scholar 

  • Zhu L, Adedeji AA, Alavi S (2017) Effect of germination and extrusion on physicochemical properties and nutritional qualities of extrudates and tortilla from wheat. J Food Sci 82(8):1867–1875. https://doi.org/10.1111/1750-3841.13797

    Article  CAS  PubMed  Google Scholar 

  • Zilber-Rosenberg ERI (2013) 15 role of microorganisms in adaptation, development, and evolution of animals and plants: the hologenome concept. Prokaryotic Biology and Symbiotic Associations. Springer, Heidelberg, New York, Dordrecht, London

Download references

Acknowledgements

North-West University is appreciated and acknowledged for the school bursaries provided to AAA. Profs Max Haggblom and Lee Kerkhof for their guidance and the Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, USA for the SEBS fellowship awarded to AAA. OOB thanks the National Research Foundation, South Africa, for grant (UID123634) that has supported research in our laboratory.

Funding

This work was supported by the National Research Foundation Grant number UID 123634.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olubukola Oluranti Babalola.

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adedeji, A.A., Babalola, O.O. Secondary metabolites as plant defensive strategy: a large role for small molecules in the near root region. Planta 252, 61 (2020). https://doi.org/10.1007/s00425-020-03468-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03468-1

Keywords

Navigation