Skip to main content
Log in

Leaf nitrate accumulation influences the photorespiration of rice (Oryza sativa L.) seedlings

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The form of nitrogen (N) supply influences photorespiration in C3 plants, but whether nitrate (NO3) regulates photorespiration and, if so, the underlying mechanisms for such regulation are still unclear.

Methods

Three hydroponic experiments were conducted in a greenhouse to investigate the relationships between leaf NO3 concentrations and photorespiration rates in rice (Oryza sativa L.) genotypes cv. ‘Shanyou 63’ hybrid indica and ‘Zhendao 11’ hybrid japonica or using mutants that overexpress NRT2.1 (in cv. ‘Nipponbare’ inbred japonica). We estimated photorespiratory rate from the CO2 compensation point in the absence of daytime respiration (Γ*) using the biochemical model of photosynthesis.

Results

Higher Γ* values under high N level or NO3 were significantly and positively correlated with leaf NO3 concentrations. Further elevating leaf NO3 concentrations by either resuming NO3 nutrition supply after N depletion (in cv. ‘Shanyou 63’ hybrid indica and ‘Zhendao 11’ hybrid japonica) or using mutants that overexpress NRT2.1 (in cv. ‘Nipponbare’ inbred japonica) increased Γ* values. Additionally, the activities of leaf nitrate reductase (Nr) and concentrations of organic acids involving in the tricarboxylic acid (TCA) cycle synchronously changed as environmental conditions were varied.

Conclusions

Photorespiration rate is related to the leaf NO3 concentration, and the correlation may links to the photorespiration-TCA derived reductants required for NO3 assimilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A :

net photosynthetic rate

Ci :

intercellular CO2 concentration

Ci*:

apparent CO2 compensation point in the absence of respiration

g m :

mesophyll conductance

gs :

stomatal conductance

J T :

total electron transport rate

N:

nitrogen

NH4+ :

ammonium

NO3 :

nitrate

Nr:

nitrate reductase

PPFD:

photosynthetic photon flux density

R d :

day respiration rate

TCA:

tricarboxylic acid

Γ*:

CO2 compensation point in the absence of daytime respiration

References

  • Bauwe H, Hagemann M, Fernie AR (2010) Photorespiration: players, partners and origin. Trends Plant Sci 15:330–336

    Article  CAS  PubMed  Google Scholar 

  • Berghuijs H, Yin X, Ho Q, Retta MA, Verboven P, Nicolaï BM, Struik PC (2017) Localization of (photo) respiration and CO2 re-assimilation in tomato leaves investigated with a reaction-diffusion model. PLoS One 12:e0183746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bloom AJ, Smart DR, Nguyen DT, Searles PS. (2002) Nitrogen assimilation and growth of wheat under elevated carbon dioxide. P Natl Acad Sci USA 99:1730–1735

  • Bloom AJ (2015) The increasing importance of distinguishing among plant nitrogen sources. Curr Opin Plant Biol 25:10–16

    Article  CAS  PubMed  Google Scholar 

  • Bloom AJ, Lancaster KM (2018) Manganese binding to Rubisco could drive a photorespiratory pathway that increases the energy efficiency of photosynthesis. Nat Plants 4:414–422

    Article  CAS  PubMed  Google Scholar 

  • Bloom AJ, Burger M, Rubio Asensio JS, Cousins AB (2010) Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science 328:899–903

    Article  CAS  PubMed  Google Scholar 

  • Busch FA (2013) Current methods for estimating the rate of photorespiration in leaves. Plant Biol 15:648–655

    Article  CAS  PubMed  Google Scholar 

  • Busch FA (2020) Photorespiration in the context of Rubisco biochemistry, CO2 diffusion and metabolism. Plant J 101:919–939

    Article  CAS  PubMed  Google Scholar 

  • Busch FA, Sage TL, Cousins AB, Sage RF (2012) C3 plants enhance rates of photosynthesis by reassimilating photorespired and respired CO2. Plant Cell Environ 36:200–212

    Article  PubMed  CAS  Google Scholar 

  • Cataldo D, Maroon M, Schrader L, Youngs V (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid 1. Commun Soil Sci Plan 6:71–80

    Article  CAS  Google Scholar 

  • Chen J, Zhang Y, Tan Y, Zhang M, Zhu L, Xu G, Fan X (2016) Agronomic nitrogen-use efficiency of rice can be increased by driving OsNRT2.1 expression with the OsNAR2.1 promoter. Plant Biotechnol J 14:1705–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cousins AB, Pracharoenwattana I, Zhou W, Smith SM, Badger MR (2008) Peroxisomal malate dehydrogenase is not essential for photorespiration in Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release. Plant Physiol 148:786–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong J, Gruda N, Lam SK, Li X, Duan Z. (2018) Effects of elevated CO on nutritional quality of vegetables–a review. Front Plant Sci 9:924

  • Dordas CA, Sioulas C (2008) Safflower yield, chlorophyll content, photosynthesis, and water use efficiency response to nitrogen fertilization under rainfed conditions. Ind Crop Prod 27:75–85

    Article  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Ribas-Carbo M, Diaz-Espejo A, Galmés J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602–621

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G, Hodges M (2011) Respiration and nitrogen assimilation: targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency. J Exp Bot 62:1467–1482

    Article  CAS  PubMed  Google Scholar 

  • Frechilla S, Gonzalez EM, Royuela M, Arrese-Igor C, Lamsfus C, Aparicio-Tejo PM (1999) Source of nitrogen nutrition affects pea growth involving changes in stomatal conductance and photorespiration. J Plant Nutr 22:911–926

    Article  CAS  Google Scholar 

  • Guan XQ, Zhao SJ, Li DQ, Shu HR (2004) Photoprotective function of photorespiration in several grapevine cultivars under drought stress. Photosynthetica 42:31–36

    Article  CAS  Google Scholar 

  • Guilherme EA, Carvalho FEL, Daloso DM, Silveira JAG (2019) Increase in assimilatory nitrate reduction and photorespiration enhances CO2 assimilation under high light-induced photoinhibition in cotton. Environ Exp Bot 159:66–74

    Article  CAS  Google Scholar 

  • Guo S, Schinner K, Sattelmacher B, Hansen U-P (2005) Different apparent CO2 compensation points in nitrate- and ammonium-grown Phaseolus vulgaris and the relationship to non-photorespiratory CO2 evolution. Physiol Plant 123:288–301

    Article  CAS  Google Scholar 

  • Harley PC, Loreto F, Di Marco G, Sharkey TD (1992) Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol 98:1429–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodges M, Dellero Y, Keech O, Betti M, Raghavendra AS, Sage R, Zhu XG, Allen DK, Weber AP (2016) Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network. J Exp Bot 67:3015–3026

    Article  CAS  PubMed  Google Scholar 

  • Ji XM, Yang C, Yang J, Peng XX (2005) Determination of glycolic acid and several alpha-keto acids in plant leaves by high performance liquid chromatography. Chinese J Anal Chem 33:527–530

    CAS  Google Scholar 

  • Jiang C, Gao H, Zou Q, Jiang G, Li L (2006) Leaf orientation, photorespiration and xanthophyll cycle protect young soybean leaves against high irradiance in field. Environ Exp Bot 55:87–96

    Article  CAS  Google Scholar 

  • Lawlor DW, Boyle FA, Young AT, Keys AJ, Kendall AC (1987) Nitrate nutrition and temperature effects on wheat: photosynthesis and photorespiration of leaves. J Exp Bot 38:393–408

    Article  Google Scholar 

  • Li Y, Gao Y, Xu X, Shen Q, Guo S (2009) Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration. J Exp Bot 60:2351–2360

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Yang X, Ren B, Shen Q, Guo S (2012) Why nitrogen use efficiency decreases under high nitrogen supply in rice (Oryza sativa L.) seedlings. J Plant Growth Regul 31:47–52

    Article  CAS  Google Scholar 

  • Li Y, Ren B, Gao L, Ding L, Jiang D, Xu X, Shen Q, Guo S (2013) Less chlorophyll does not necessarily restrain light capture ability and photosynthesis in a chlorophyll-deficient rice mutant. J Agron Crop Sci 199:49–56

    Article  CAS  Google Scholar 

  • Ling N, Raza W, Ma J, Huang Q, Shen Q (2011) Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere. Eur J Soil Biol 47:374–379

    Article  CAS  Google Scholar 

  • Long SP, Zhu X-G, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29:315–330

    Article  CAS  PubMed  Google Scholar 

  • Makino A (2003) Rubisco and nitrogen relationships in rice: leaf photosynthesis and plant growth. Soil Sci Plant Nutr 49:319–327

    Article  CAS  Google Scholar 

  • Makino A (2011) Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol 155:125–129

    Article  CAS  PubMed  Google Scholar 

  • Manter DK, Kerrigan J (2004) A/Ci curve analysis across a range of woody plant species: influence of regression analysis parameters and mesophyll conductance. J Exp Bot 55:2581–2588

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Andujar C, Ghanem ME, Albacete A, Perez-Alfocea F (2013) Response to nitrate/ammonium nutrition of tomato (Solanum lycopersicum L.) plants overexpressing a prokaryotic NH4(+)-dependent asparagine synthetase. J Plant Physiol 170:676–687

    Article  CAS  PubMed  Google Scholar 

  • Martinoia E, Rentsch D (1994) Malate compartmentation-responses to a complex metabolism. Annu Rev Plant Biol 45:447–467

    Article  CAS  Google Scholar 

  • Mattsson M, Schjoerring JK (1996) Ammonia emission from young barley plants: influence of N source, light/dark cycles and inhibition of glutamine synthetase. J Exp Bot 47:477–484

    Article  CAS  Google Scholar 

  • Nelson D, Sommers L (1972) A simple digestion procedure for estimation of total nitrogen in soils and sediments 1. J Environ Qual 1:423–425

    Article  CAS  Google Scholar 

  • Obata T, Florian A, Timm S, Bauwe H, Fernie AR (2016) On the metabolic interactions of (photo)respiration. J Exp Bot 67:3003–3014

    Article  CAS  PubMed  Google Scholar 

  • Oliveira IC, Brears T, Knight TJ, Clark A, Coruzzi GM (2002) Overexpression of cytosolic glutamine synthetase. Relation to nitrogen, light, and photorespiration. Plant Physiol 129:1170–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker MS, Armbrust E (2005) Synergistic effects of light, temperature, and nitrogen source on transcription of genes for carbon and nitrogen metabolism in the centric diatom Thalassiosira pseudonana (Bacillariophyceae). J Phycol 41:1142–1153

    Article  CAS  Google Scholar 

  • Pons TL, Flexas J, von Caemmerer S, Evans JR, Genty B, Ribas-Carbo M, Brugnoli E (2009) Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations. J Exp Bot 60:2217–2234

    Article  CAS  PubMed  Google Scholar 

  • Rachmilevitch S, Cousins AB, Bloom AJ (2004) Nitrate assimilation in plant shoots depends on photorespiration. Proc Natl Acad Sci USA 101:11506–11510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas CM, Senthil-Kumar M, Wang K, Ryu CM, Kaundal A, Mysore KS (2012) Glycolate oxidase modulates reactive oxygen species-mediated signal transduction during nonhost resistance in Nicotiana benthamiana and Arabidopsis. Plant Cell 24:336–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sage RF, Pearcy RW (1987) The nitrogen use efficiency of C3 and C4 plants: II. Leaf nitrogen effects on the gas exchange characteristics of Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiol 84:959–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheible WR, Gonzalez-Fontes A, Lauerer M, Muller-Rober B, Caboche M, Stitt M (1997) Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9:783–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheible WR, Krapp A, Stitt M (2000) Reciprocal diurnal changes of phosphoenolpyruvate carboxylase expression and cytosolic pyruvate kinase, citrate synthase and NADP-isocitrate dehydrogenase expression regulate organic acid metabolism during nitrate assimilation in tobacco leaves. Plant Cell Environ 23:1155–1167

    Article  CAS  Google Scholar 

  • Schneidereit J, Häusler RE, Fiene G, Kaiser WM, Weber AP (2006) Antisense repression reveals a crucial role of the plastidic 2-oxoglutarate/malate translocator DiT1 at the interface between carbon and nitrogen metabolism. Plant J 45:206–224

    Article  CAS  PubMed  Google Scholar 

  • Sharkey TD (1985) O2-insensitive photosynthesis in C3 plants: its occurrence and a possible explanation. Plant Physiol 78:71–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharkey TD (1988) Estimating the rate of photorespiration in leaves. Physiol Plant 73:147–152

    Article  CAS  Google Scholar 

  • Shen BR, Wang LM, Lin XL, Yao Z, Xu HW, Zhu CH, Teng HY, Cui LL, Liu EE, Zhang JJ, He ZH, Peng XX (2019) Engineering a new chloroplastic photorespiratory bypass to increase photosynthetic efficiency and productivity in rice. Mol Plant 12:199–214

    Article  CAS  PubMed  Google Scholar 

  • Somerville CR (2001) An early Arabidopsis demonstration. Resolving a few issues concerning photorespiration. Plant Physiol 125:20–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • South PF, Cavanagh AP, Liu HW, Ort DR (2019) Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science 363:eaat9077

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi M, Miyake H (2012) Redox-shuttling between chloroplast and cytosol: integration of intra-chloroplast and extra-chloroplast metabolism. Curr Opin Plant Biol 15:252–260

    Article  CAS  PubMed  Google Scholar 

  • Timm S, Bauwe H (2013) The variety of photorespiratory phenotypes - employing the current status for future research directions on photorespiration. Plant Biol 15:737–747

    Article  CAS  PubMed  Google Scholar 

  • Timm S, Wittmiss M, Gamlien S, Ewald R, Florian A, Frank M, Wirtz M, Hell R, Fernie AR, Bauwe H (2015) Mitochondrial dihydrolipoyl dehydrogenase activity shapes photosynthesis and photorespiration of Arabidopsis thaliana. Plant Cell 27:1968–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timm S, Florian A, Fernie AR, Bauwe H (2016) The regulatory interplay between photorespiration and photosynthesis. J Exp Bot 67:2923–2929

    Article  CAS  PubMed  Google Scholar 

  • Voss I, Sunil B, Scheibe R, Raghavendra AS (2013) Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biol 15:713–722

    Article  CAS  PubMed  Google Scholar 

  • Walker BJ, VanLoocke A, Bernacchi CJ, Ort DR (2016) The costs of photorespiration to food production now and in the future. Annu Rev Plant Biol 67:107–129

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Sun Y, Gu Z, Wang R, Sun G, Zhu C, Guo S, Shen Q (2016) Nitrate protects cucumber plants against Fusarium oxysporum by regulating citrate exudation. Plant Cell Physiol 57:2001–2012

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Gu Z, Wang R, Guo J, Ling N, Firbank LG, Guo S (2018) Plant primary metabolism regulated by nitrogen contributes to plant-pathogen interactions. Plant Cell Physiol 60:329–342

    Article  CAS  Google Scholar 

  • Wujeska-Klause A, Crous KY, Ghannoum O, Ellsworth DS (2019) Lower photorespiration in elevated CO2 reduces leaf N concentrations in mature Eucalyptus trees in the field. Glob Chang Biol 25:1282–1295

    Article  Google Scholar 

  • Xiong D, Liu X, Liu L, Douthe C, Li Y, Peng S, Huang J (2015) Rapid responses of mesophyll conductance to changes of CO2 concentration, temperature and irradiance are affected by N supplements in rice. Plant Cell Environ 38:2541–2550

    Article  CAS  PubMed  Google Scholar 

  • Yamori W, Nagai T, Makino A (2011) The rate-limiting step for CO(2) assimilation at different temperatures is influenced by the leaf nitrogen content in several C(3) crop species. Plant Cell Environ 34:764–777

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank professor Luis A. J. Mur (IBRES, Aberystwyth University, UK) for critical reading and revising of the English in this manuscript. This work was financially supported by the National Key R & D Program (2016YFD0200305, 2016YFD0200900) and the Young Elite Scientists Sponsorship Program by CAST (2018QNRC001).

Author information

Authors and Affiliations

Authors

Contributions

S.W.G. and Y.R.L. conceived and designed the experiment; Y.R.L., B.W. and M.W. performed the experiments; Y.R.L., Y.M.S. and L.D. analyzed the data and contributed table and figures; Y.M.S. and S.W.G. wrote the paper; X.R.F. provided the transgenic lines of rice seedlings; Y.L., L.A.J.M. and Q.R.S. proofread and polished the manuscript; all authors reviewed the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Shiwei Guo.

Additional information

Responsible Editor: Ad C. Borstlap.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Li, Y., Wang, B. et al. Leaf nitrate accumulation influences the photorespiration of rice (Oryza sativa L.) seedlings. Plant Soil 456, 323–338 (2020). https://doi.org/10.1007/s11104-020-04710-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-020-04710-1

Keywords

Navigation