Skip to main content
Log in

An electrochemical DNA biosensor based on nitrogen-doped graphene nanosheets decorated with gold nanoparticles for genetically modified maize detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A reliable electrochemical biosensor is reported based on nitrogen-doped graphene nanosheets and gold nanoparticle (Au/N-G) nanocomposites for the event-specific detection of GM maize MIR162. The differential pulse voltammetry response of methylene blue (MB) was chosen to monitor the target DNA hybridization event. Under the optimum conditions, the peak current increased linearly with the logarithm of the concentration of DNA in the range 1.0 × 10−14 to 1.0 × 10−8 M, and the detection limit was 2.52 × 10−15 M (S/N = 3). It is also demonstrated that the DNA biosensor has high selectivity, good stability, and fabrication reproducibility. The biosensor has been effectively applied to detect MIR162 in real samples, showing its potential as an effective tool for GM crop analysis. These results will contribute to the development of new portable transgenic detection systems.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. James C (2019) Global status of commercialized biotech/GM crops in 2018. China Biotechnol 39:1–6

    Google Scholar 

  2. Long N, Bottoms J, Meghji MR, et al (2017) Corn Event MIR162

  3. Takabatake R, Masubuchi T, Futo S et al (2014) Development and validation of an event-specific quantitative PCR method for genetically modified maize MIR162. Shokuhin Eiseigaku Zasshi 55:205–209

    Article  CAS  Google Scholar 

  4. Marmiroli N, Maestri E, Gulli M et al (2008) Methods for detection of GMOs in food and feed. Anal Bioanal Chem 392:369–384

    Article  CAS  Google Scholar 

  5. Fu W, Wang H, Wang C, Mei L, Lin X, Han X, Zhu S (2016) A high-throughput liquid bead array-based screening technology for Bt presence in GMO manipulation. Biosens Bioelectron 77:702–708

    Article  CAS  Google Scholar 

  6. Manzanares-Palenzuela CL, Martín-Fernández B, Sánchez-Paniagua López M, López-Ruiz B (2015) Electrochemical genosensors as innovative tools for detection of genetically modified organisms. TrAC Trends Anal Chem 66:19–31

    Article  CAS  Google Scholar 

  7. Sanchez-Paniagua Lopez M, Manzanares-Palenzuela CL, Lopez-Ruiz B (2018) Biosensors for GMO testing: nearly 25 years of research. Crit Rev Anal Chem 48:391–405

    Article  CAS  Google Scholar 

  8. Xu K, Huang J, Ye Z, Ying Y, Li Y (2009) Recent development of nano-materials used in DNA biosensors. Sensors (Basel) 9:5534–5557

    Article  CAS  Google Scholar 

  9. He S, Song B, Li D, Zhu C, Qi W, Wen Y, Wang L, Song S, Fang H, Fan C (2010) A craphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv Funct Mater 20:453–459

    Article  CAS  Google Scholar 

  10. Li L, Wen Y, Xu Q, Xu L, Liu D, Liu G, Huang Q (2015) Application of carbon nanomaterials in gene delivery for endogenous RNA interference in vitro and in vivo. Curr Pharm Des 21:3191–3198

    Article  CAS  Google Scholar 

  11. Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, Fan C, Huang Q (2011) Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5:3693–3700

    Article  CAS  Google Scholar 

  12. Chen H, Müller MB, Gilmore KJ, Wallace GG, Li D (2008) Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 20:3557–3561

    Article  CAS  Google Scholar 

  13. Pumera M (2009) Electrochemistry of graphene: new horizons for sensing and energy storage. Chem Rec 9:211–223

    Article  CAS  Google Scholar 

  14. Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. TrAC Trends Anal Chem 29:954–965

    Article  CAS  Google Scholar 

  15. Cao X (2014) Ultra-sensitive electrochemical DNA biosensor based on signal amplification using gold nanoparticles modified with molybdenum disulfide, graphene and horseradish peroxidase. Microchim Acta 181:1133–1141

    Article  CAS  Google Scholar 

  16. Giribabu K, Suresh R, Manigandan R, Praveen Kumar S, Muthamizh S, Munusamy S, Narayanan V (2014) Preparation of nitrogen-doped reduced graphene oxide and its use in a glassy carbon electrode for sensing 4-nitrophenol at nanomolar levels. Microchim Acta 181:1863–1870

    Article  CAS  Google Scholar 

  17. Long D, Li W, Ling L, Miyawaki J, Mochida I, Yoon SH (2010) Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir 26:16096–16102

    Article  CAS  Google Scholar 

  18. Chen P, Xiao TY, Qian YH, Li SS, Yu SH (2013) A nitrogen-doped graphene/carbon nanotube nanocomposite with synergistically enhanced electrochemical activity. Adv Mater 25:3192–3196

    Article  CAS  Google Scholar 

  19. Liu X, Li Z, Ding R, Ren B, Li Y (2016) A nanocarbon paste electrode modified with nitrogen-doped graphene for square wave anodic stripping voltammetric determination of trace lead and cadmium. Microchim Acta 183:709–714

    Article  CAS  Google Scholar 

  20. Lee SU, Belosludov RV, Mizuseki H, Kawazoe Y (2009) Designing nanogadgetry for nanoelectronic devices with nitrogen-doped capped carbon nanotubes. Small 5:1769–1775

    Article  CAS  Google Scholar 

  21. Hassan M, Jiang Y, Bo X, Zhou M (2018) Sensitive nonenzymatic detection of hydrogen peroxide at nitrogen-doped graphene supported-CoFe nanoparticles. Talanta 188:339–348

    Article  CAS  Google Scholar 

  22. Chen M, Hou C, Huo D, Fa H, Zhao Y, Shen C (2017) A sensitive electrochemical DNA biosensor based on three-dimensional nitrogen-doped graphene and Fe3O4 nanoparticles. Sensors Actuators B Chem 239:421–429

    Article  CAS  Google Scholar 

  23. Cai H, Xu C, He P, Fang Y (2001) Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA. J Electroanal Chem 510:78–85

    Article  CAS  Google Scholar 

  24. Liu S, Leech D, Ju H (2003) Application of colloidal gold in protein immobilization, electron transfer, and biosensing. Anal Lett 36:1–19

    Article  CAS  Google Scholar 

  25. Yanez-Sedeno P, Pingarron JM (2010) Gold nanoparticle-based electrochemical biosensors. Anal Bioanal Chem 382:884–886

    Article  Google Scholar 

  26. Fang X, Jiang W, Han X, Zhang Y (2013) Molecular beacon based biosensor for the sequence-specific detection of DNA using DNA-capped gold nanoparticles-streptavidin conjugates for signal amplification. Microchim Acta 180:1271–1277

    Article  CAS  Google Scholar 

  27. Shekari Z, Zare HR, Falahati A (2019) Electrochemical sandwich aptasensor for the carcinoembryonic antigen using graphene quantum dots, gold nanoparticles and nitrogen doped graphene modified electrode and exploiting the peroxidase-mimicking activity of a G-quadruplex DNAzyme. Microchim Acta 186:530

    Article  Google Scholar 

  28. Borowiec J, Wang R, Zhu L, Zhang J (2013) Synthesis of nitrogen-doped graphene nanosheets decorated with gold nanoparticles as an improved sensor for electrochemical determination of chloramphenicol. Electrochim Acta 99:138–144

    Article  CAS  Google Scholar 

  29. Yang G, Li L, Rana RK, Zhu J-J (2013) Assembled gold nanoparticles on nitrogen-doped graphene for ultrasensitive electrochemical detection of matrix metalloproteinase-2. Carbon N Y 61:357–366

    Article  CAS  Google Scholar 

  30. Chen M, Hou C, Huo D, Bao J, Fa H, Shen C (2016) An electrochemical DNA biosensor based on nitrogen-doped graphene/Au nanoparticles for human multidrug resistance gene detection. Biosens Bioelectron 85:684–691

    Article  CAS  Google Scholar 

  31. Yang T, Zhou N, Li Q, Guan Q, Zhang W, Jiao K (2012) Highly sensitive electrochemical impedance sensing of PEP gene based on integrated Au–Pt alloy nanoparticles and polytyramine. Colloids Surfaces B Biointerfaces 97:150–154

    Article  CAS  Google Scholar 

  32. Aghili Z, Nasirizadeh N, Divsalar A, Shoeibi S, Yaghmaei P (2017) A nanobiosensor composed of exfoliated graphene oxide and gold nano-urchins, for detection of GMO products. Biosens Bioelectron 95:72–80

    Article  CAS  Google Scholar 

  33. Han X, Fang X, Shi A, Wang J, Zhang Y (2013) An electrochemical DNA biosensor based on gold nanorods decorated graphene oxide sheets for sensing platform. Anal Biochem 443:117–123

    Article  CAS  Google Scholar 

  34. Sun W, Zhang Y, Hu A, Lu Y, Shi F, Lei B, Sun Z (2013) Electrochemical DNA biosensor based on partially reduced graphene oxide modified carbon ionic liquid electrode for the detection of transgenic soybean A2704-12 gene sequence. Electroanalysis 25:1417–1424

    Article  CAS  Google Scholar 

  35. Xueliang W, Zhaoxia W, Tao W, Xiaohui DAI (2019) Electrochemical determination of the specific genetic sequence in transgenic maize using reduced graphene oxide and nano zirconia composites as a platform for immobilizing DNA. Chin J Appl Chem 36:839–846

    Google Scholar 

  36. Fortunati S, Rozzi A, Curti F, Giannetto M, Corradini R, Careri M (2019) Novel amperometric genosensor based on peptide nucleic acid (PNA) probes immobilized on carbon nanotubes-screen printed electrodes for the determination of trace levels of non-amplified DNA in genetically modified (GM) soy. Biosens Bioelectron 129:7–14

    Article  CAS  Google Scholar 

  37. Jamaluddin RZAR, Heng LY, Tan LL, Chong KF (2018) A biosensor for genetic modified soybean DNA determination via adsorption of anthraquinone-2-sulphonic acid in reduced graphene oxide. Electroanalysis 30:250–258

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 31200944), the National Key R&D Program of China (No. 2019YFA0904700), and the Agricultural Science and Technology Innovation Program of CAAS (no. CAAS-ZDRW202009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Liu, Xiao Zhang or Liang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 223 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Li, K., Zhang, Y. et al. An electrochemical DNA biosensor based on nitrogen-doped graphene nanosheets decorated with gold nanoparticles for genetically modified maize detection. Microchim Acta 187, 574 (2020). https://doi.org/10.1007/s00604-020-04511-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04511-4

Keywords

Navigation