Skip to main content
Log in

Temporal Changes Over Major Antarctic Ice Shelve Margins During 2001–2016

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

In spite of importance of the ice shelves as a probable sign of global climate change, temporal changes of Antarctic ice shelf margins are largely unknown. In the present article, an attempt has been made for chronological mapping of major four Antarctic ice shelf fronts for the period 2001–2016, using MODerate resolution Imaging Satellite images. Vector layers of individual ice shelves from 2001 to 2015 have been overlaid on the image of 2016. It is found that all the four ice shelves have advanced; the Filchner ice shelf advanced maximum (24 km) and the Ross ice shelf advanced minimum (16 km). Maximum range in yearly rate of advance is observed at Ronne Ice Shelf and the highest variability in rate of advance is observed over Filchner ice shelf. In terms of area change, maximum expansion occurred at Ronne ice shelf (8813 km2) and least expansion is observed over Amery ice shelf (2520 km2). Poor correlation between rates of change at different ice shelves suggests that different atmospheric and oceanic drivers are responsible for changes at individual ice shelves. Interestingly, the highest rate of advance as well as higher variability in rate of advance is observed over the latter half of the study period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Australian Antarctic Division. (2019). Department of Environment and Energy, Australian Government, Gigantic iceberg breaks off East Antarctica; http://www.antarctica.gov.au/news/2019/gigantic-iceberg-breaks-off-east-antarctica.

  • Barry, R., & Gan, T. Y. (2011). The global cryosphere: Past, present and future. Cambridge: Cambridge University Press. ISBN 978-0-521-76981-5.

    Book  Google Scholar 

  • Bassis, J. N., Coleman, R., Fricker, H. A., & Minster, J. B. (2005). Episodic propagation of a rift on the Amery Ice Shelf, East Antarctica. Geophysical Research Letters, 320(L06502). https://doi.org/10.1029/2004gl022048.

  • Bassis, J. N., Fricker, H. A., Coleman, R., & Minster, J. B. (2008). An investigation into the forces that drive ice-shelf rift propagation on the Amery Ice Shelf, East Antarctica. Journal of Glaciology, 54, 17–27. https://doi.org/10.3189/002214308784409116.

    Article  Google Scholar 

  • Bassis, J. N., & Jacobs, S. (2013). Diverse calving patterns linked to glacier geometry. Nature Geoscience, 6(10), 833–836. https://doi.org/10.1038/ngeo1887.

    Article  Google Scholar 

  • Baumhoer, C., Dietz, A. J., Dech, S., & Kuenzer, C. (2018). Remote sensing of Antarctic glacier and ice shelf front dynamics: A review. Remote Sensing, 10(9), 1445. https://doi.org/10.3390/rs10091445.

    Article  Google Scholar 

  • Berthier, E., Scambos, T. A., & Shuman, C. A. (2012). Mass loss of Larsen B tributary glaciers (Antarctic Peninsula) unabated since 2002. Geophysical Research Letters. https://doi.org/10.1029/2012gl051755.

    Article  Google Scholar 

  • Bromirski, P. D., Sergienko, O. V., & MacAyeal, D. R. (2010). Transoceanic infragravity waves impacting Antarctic ice shelves. Geophysical Research Letters. https://doi.org/10.1029/2009GL041488.

    Article  Google Scholar 

  • Brunt, K. M., Okal, E. A., & Macayeal, D. R. (2011). Antarctic ice-shelf calving triggered by the Honshu (Japan) earthquake and tsunami, March 2011. Journal of Glaciology, 57, 785–788. https://doi.org/10.3189/002214311798043681.

    Article  Google Scholar 

  • Budd, W. (1966). The dynamics of the Amery Ice Shelf. Journal of Glaciology, 6(45), 335–358.

    Article  Google Scholar 

  • Cook, A. J., Fox, A. J., Vaughan, D. G., & Ferrigno, J. G. (2005). Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science, 308, 541–544.

    Article  Google Scholar 

  • Cook, A. J., Holland, P. R., Meredith, M. P., Murray, T., Luckman, A., & Vaughan, D. G. (2016). Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science, 353, 283–286.

    Article  Google Scholar 

  • Cook, A. J., & Vaughan, D. G. (2009). Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. The Cryosphere Discussions, 3, 579–630.

    Article  Google Scholar 

  • Darji, S., Oza, S. R., Shah, R. D., Rathore, B. P., & Bahuguna, I. M. (2018). Rift assessment and potential calving zone of Amery Ice Shelf, East Antarctica. Current Science, 115(9), 1799–1804.

    Article  Google Scholar 

  • De Angelis, H. N., & Skvarca, P. (2003). Glacier surge after ice shelf collapse. Science, 299, 1560–1562.

    Article  Google Scholar 

  • Doake, C. S. M., & Vaughan, D. G. (1991). Rapid disintegration of the Wordie Ice Shelf in response to atmospheric warming. Nature, 350, 328–330.

    Article  Google Scholar 

  • Drewry, D. J. (Ed). (1983). Antarctic ice sheet thickness and volume; Glaciological and Geophysical Folio, Cambridge University, Scott Polar Research Institute, Cambridge, UK, Sheet 4.

  • Dupont, T. K., & Alley, R. B. (2005). Assessment of the importance of ice-shelf buttressing to ice-sheet flow. Geophysical Research Letters, 32(4), L04503.

    Article  Google Scholar 

  • Ferrigno, J. G., Foley, K. M., Swithinbank C, Williams Jr. R. S., & Dalide, L. M. (2005). Coastal change and glaciological map of the Ronne ice shelf area, Antarctica 1974–2002. U.S. Geological Survey. IMAP 2600 D. https://doi.org/10.3133/i2600d.

  • Ferrigno, J. G., & Gould, W. G. (1987). Substantial changes in the coastline of Antarctica revealed by satellite imagery. Polar Record, 23(146), 577–583.

    Article  Google Scholar 

  • Fricker, H. A., Young, N. W., Allison, I., & Coleman, R. (2002). Iceberg calving from the Amery Ice Shelf. East Antarctica. Annals of Glaciology, 34, 241–246. https://doi.org/10.3189/172756402781817581.

    Article  Google Scholar 

  • Glasser, N. F., Scambos, T. A., Bohlander, J., Truffer, M., Petti, E., & Davies, B. J. (2011). From ice-shelf tributary to tidewater glacier: continued rapid recession, acceleration and thinning of Rohss Glacier following the 1995 collapse of the Prince Gustav Ice Shelf. Antarctic Peninsula. Journal of Glaciology, 57(203), 397–406.

    Article  Google Scholar 

  • Williams, R. S. Jr., & Hall, D. K. (1993). Glaciers, atlas of satellite observations related to global change. In R. J. Gurney, J. Foster, C. L. Parkinson, (Eds), Cambridge University Press, Cambridge, UK, pp. 401–422.

  • Hanna, E., Navarro, F. J., Pattyn, F., Domingues, C. M., Fettweis, X., Ivins, E. R., et al. (2013). Ice-sheet mass balance and climate change. Nature, 498, 51–59.

    Article  Google Scholar 

  • Hulbe, C. L., Scambos, T. A., Youngberg, T., & Lamb, A. K. (2008). Patterns of glacier response to disintegration of the Larsen B Ice Shelf, Antarctic Peninsula. Global Planetary Change, 63, 1–8.

    Article  Google Scholar 

  • Jacobs, S. S., Jenkins, A., Giulivi, C. F., & Dutrieux, P. (2011). Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nature Geoscience, 4(8), 519–523.

    Article  Google Scholar 

  • Jayaprasad, P., Ahmed, T., Maity, S., & Misra, A. (2018). Breaking of Larsen C from Antarctica. Current Science, 114(5), 961–962.

    Article  Google Scholar 

  • Jena, B., Ravichandran, M., & Turner, J. (2019). Recent reoccurrence of large open-ocean polynya on the Maud Rise Seamount. Geophysical Research Letters, 46(8), 4320–4329. https://doi.org/10.1029/2018GL081482.

    Article  Google Scholar 

  • Jezek, K. C. (1999). Glaciological properties of the Antarctic ice sheet from RADARSAT-1 synthetic aperture radar imagery. Annals of Glaciology, 29(1), 286–290.

    Article  Google Scholar 

  • Kim, K. T. (2004) Satellite mapping and automated feature extraction: Geographic information system-based change detection of the Antarctic Coast; PhD Thesis, The Ohio State University.

  • Kim, K., Jezek, K. C., & Liu, H. (2007). Orthorectified image mosaic of Antarctica from 1963 Argon satellite photography: image processing and glaciological applications. International Journal of Remote Sensing, 8(23), 5357–5373. https://doi.org/10.1080/01431160601105850.

    Article  Google Scholar 

  • Lazzara, M. A., Jezek, K. C., Scambos, T. A., MacAyeal, D. R., & van derVeen, C. J. (2008). On the recent calving of icebergs from the Ross Ice Shelf. Polar Geography, 31(1–2), 15–26.

    Article  Google Scholar 

  • Li, R., Xiao. H., Liu, S., & Tong, X. (2017). A systematic study of the fracturing of Ronne-Filchner Ice Shelf, Antarctica, using multisource satellite data from 2001 to 2016. The Cryosphere Discussions, https://doi.org/10.5194/tc-2017-178.

  • Liu, H., & Jezek, K. C. (2004a). A complete high-resolution coastline of Antarctica extracted from orthorectified Radarsat SAR imagery. Photogrammetric Engineering & Remote Sensing, 70(5), 605–616.

    Article  Google Scholar 

  • Liu, H., & Jezek, K. C. (2004b). Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods. International Journal of Remote Sensing, 25, 937–958.

    Article  Google Scholar 

  • Liu, Y., Moore, J. C., Cheng, X., Gladstone, R. M., Bassis, J. N., Liu, H., et al. (2015). Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves. Proceedings of the National Academy of Sciences, 112(11), 3263–3268.

    Article  Google Scholar 

  • Ma, B. D., Wu, L. X., Zhang, X. X., Li, X. C., Liu, Y., & Wang, S. L. (2014). Locally adaptive unmixing method for lake-water area extraction based on MODIS 250 m bands. International Journal Applied Earth Observation and Geoinformation, 33, 109–118.

    Article  Google Scholar 

  • MacAyeal, D. R., Okal, E. A., Aster, R. C., Bassis, J. N., Brunt, K. M., Cathles, L. M., et al. (2006). Transoceanic wave propagation links iceberg calving margins of Antarctica with storms in tropics and Northern Hemisphere. Geophysical Research Letters. https://doi.org/10.1029/2006GL027235.

    Article  Google Scholar 

  • Moholdt, G., Padman, L., & Fricker, H. A. (2015). Basal mass budget of Ross and Filchner-Ronne ice shelves, Antarctica, derived from Lagrangian analysis of ICESat altimetry. Journal of Geophysical Research: Earth Surface, 119, 2361–2380. https://doi.org/10.1002/2014JF003171.

    Article  Google Scholar 

  • Naughten, K. A., Jenkins, A., Holland, P. R., Mugford, R. I., Nicholls, K. W., & Munday, D. R. (2019). Modeling the influence of the Weddell Polynya on the Filchner-Ronne Ice Shelf Cavity. Journal of Climate, 32(16), 5289–5303. https://doi.org/10.1175/JCLI-D-19-0203.1.

    Article  Google Scholar 

  • Nunziata, F., Buono, A., Migliaccio, M., & Benassai, G. (2016). Dual-Polarimetric C- and X-Band SAR data for coastline extraction. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(11), 4921–4928. https://doi.org/10.1109/JSTARS.2016.2560342.

    Article  Google Scholar 

  • Paolo, F. S., Fricker, H. A., & Padman, L. (2015). Volume loss from Antarctic ice shelves is accelerating. Science, 348(6232), 327–331. https://doi.org/10.1126/science.aaa0940.

    Article  Google Scholar 

  • Patel, S., Shah, E., Jayaprasad, B., & James, M. E. (2019). Changes in Antarctic coastline between 1997 and 2016 using RADARSAT and MODIS data. International Journal of Remote Sensing, 41(4), 1389–1414. https://doi.org/10.1080/01431161.2019.1667550.

    Article  Google Scholar 

  • Pritchard, H. D., & Vaughan, D. G. (2007). Widespread acceleration of tide-water glaciers on the Antarctic Peninsula. Journal of Geophysical Research. https://doi.org/10.1029/2006JF000597.

    Article  Google Scholar 

  • Rignot, E., Casassa, G., Gogineni, P., Krabill, W., Rivera, A., & Thomas, R. (2004). Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B Ice Shelf. Geophysical Research Letters. https://doi.org/10.1029/2004GL020697.

    Article  Google Scholar 

  • Rignot, E., Koppes, M., & Velicogna, I. (2010). Rapid submarine melting of the calving faces of West Greenland glaciers. Nature Geoscience, 3(3), 187–191.

    Article  Google Scholar 

  • Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A., & Lenaerts, J. (2011). Acceleration of the contribution of the Greenland and Antarctic Ice Sheets to sea level rise. Geophysical Research Letters. https://doi.org/10.1029/2011gl046583.

    Article  Google Scholar 

  • Rott, H., Rack, W., Nagler, T., & Skvarca, P. (1998). Climatically induced retreat and collapse of northern Larsen Ice Shelf. Antarctic Peninsula. Annals of Glaciology, 27, 86–92.

    Article  Google Scholar 

  • Scambos, T. A., Bohlander, J. A., Shuman, C. A., & Skvarca, P. (2004). Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophysical Research Letters, 31(L18402). doi:10.1029/2004gl020670.

  • Scambos, T. A., Hulbe, C., & Fahnestock, M. (2003). Climate-induced ice shelf disintegration in the Antarctic Peninsula. Antarctic Research Series, 79, 79–92. https://doi.org/10.1029/AR079p0079.

    Article  Google Scholar 

  • Scambos, T. A., Hulbe, C., Fahnestock, M., & Bohlander, J. (2000). The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. Journal of Glaciology, 46(154), 516–530.

    Article  Google Scholar 

  • Sergienko, O. V. (2010). Elastic response of floating glacier ice to impact of long-period ocean waves. Journal of Geophysical Research, 115(F04028), https://doi.org/10.1029/2010jf001721.

  • Sohn, H. G., & Jezek, K. C. (1999). Mapping ice sheet margins from ERS-1 SAR and SPOT imagery. International Journal of Remote Sensing, 20, 3201–3216.

    Article  Google Scholar 

  • Tian, Y., Weng, H., Lv, D., Tong, X., & Li, R. (2016). Change analysis of Antarctic Ice shelves based on multiple remote sensing products. In The international archives of the photogrammetry, remote sensing and spatial information sciences, (XLI-B8), XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic, pp. 545–547.

  • Trusel, L. D., Frey, K. E., Das, S. B., Karnauskasm, K. B., Kuipers, M. P., van Meijgaardm, E., et al. (2015). Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nature Geoscience, 8(12), 927–932. https://doi.org/10.1038/NGEO2563.

    Article  Google Scholar 

  • Turner, J., Guarino, M. V., Arnatt, J., Jena, B., Marshall, G. J., Phillips, T., et al. (2020). Recent decrease of summer Sea Ice in the Weddell Sea, Antarctica. Geophysical Research Letters, 47(11), e2020GL087127. https://doi.org/10.1029/2020GL087127.

  • Vaughan, D. G., & Doake, C. S. M. (1996). Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. Nature, 379, 328–331. https://doi.org/10.1038/379328a0.

    Article  Google Scholar 

  • Walker, C. C., Bassis, J. N., Fricker, H. A., & Czerwinski, R. J. (2013). Structural and environmental controls on Antarctic ice shelf rift propagation inferred from satellite monitoring. Journal of Geophysical Research: Earth Surface, 118(4), 2354–2364. https://doi.org/10.1002/2013JF002742.

    Article  Google Scholar 

  • Williams, M. J. M., Warner, R. C., & Budd, W. F. (2002). Sensitivity of the Amery Ice Shelf, Antarctica, to Changes in the Climate of the Southern Ocean. Journal of Climatology, 15, 2740–2757.

    Article  Google Scholar 

  • Winton, V. (2008) Change detection around the West Antarctic Coastline between 1997 and 2001 using Satellite Derived Images; Supervised project Reports, UC Research Repository, University of Canterbury, 1–49.

  • Zhao, C., Cheng, X., & Hui, F. M. (2013). Monitoring the Amery Ice Shelf front during 2004–2012 using ENVISAT ASAR data. Advances in Polar Science, 24(2), 133–137. https://doi.org/10.3724/SP.J.1085.2013.00133.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Raj Kumar, Deputy Director EPSA, SAC and Dr. Arundhati Misra, Group Director, AMHTDG/EPSA, SAC for their support. Authors also extend their sincere thanks to Prof. V.M. Raval for going through the manuscript meticulously and suggesting various modifications. Authors acknowledge the financial support extended to the Physics Department, Gujarat University by UGC and DST trough SAP and FIST programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jayaprasad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S., Shah, E., Jayaprasad, P. et al. Temporal Changes Over Major Antarctic Ice Shelve Margins During 2001–2016. J Indian Soc Remote Sens 48, 1509–1522 (2020). https://doi.org/10.1007/s12524-020-01174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-020-01174-9

Keywords

Navigation