Skip to main content
Log in

Superconducting Spin-Valve Effect in Structures with a Ferromagnetic Heusler Alloy Layer

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We present comparative analysis of superconducting properties of two types of spin valves containing Heusler alloy Co2Cr1 – xFexAly as one of ferromagnetic layers (F1 or F2) in the F1/F2/S structures. We have used the Heusler alloy layer (i) as a weak ferromagnet in the case of the F2 layer and (ii) as a half-metal in the case of F1 layer. In the former case, large classical effect ΔTc of the superconducting spin valve is obtained; this is facilitated by a substantial triplet contribution Δ\(T_{c}^{{{\text{trip}}}}\) to the superconducting spin valve effect. In the latter case, giant value of Δ\(T_{c}^{{{\text{trip}}}}\) reaching 0.5 K is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. K. B. Efetov, I. A. Garifullin, A. F. Volkov, and K. Westerholt, Magnetic Heterostructures. Advances and Perspectives in Spinstructures and Spintransport (Springer Berlin Heidelberg, Berlin, 2007).

    Google Scholar 

  2. K. B. Efetov, I. A. Garifullin, A. F. Volkov, and K. Westerholt, Magnetic Nanostructures. Spin Dynamic and Spin Transport (Springer Berlin Heidelberg, Berlin, 2013).

    Google Scholar 

  3. M. Eschrig, Phys. Today 64, 43 (2011).

    Article  ADS  Google Scholar 

  4. L. B. Ioffe, V. B. Geshkenbein, M. V. Feigel’man, A. L. Fauchere, and G. Blatter, Nature (London, U.K.) 398, 679 (1999).

    Article  ADS  Google Scholar 

  5. M. V. Feigel’man, Phys. Usp. 42, 823 (1999).

    Article  ADS  Google Scholar 

  6. V. V. Ryazanov, Phys. Usp. 42, 825 (1999).

    Article  ADS  Google Scholar 

  7. V. V. Ryazanov, V. A. Oboznov, A. V. Veretennikov, and A. Yu. Rusanov, Phys. Rev. B 65, 020501(R) (2001).

  8. A. V. Veretennikov, V. V. Ryazanov, V. A. Oboznov, A. Yu. Rusanov, V. A. Larkin, and J. Aarts, Phys. B (Amsterdam, Neth.) 284288, 495 (2000).

  9. V. V. Ryazanov, V. A. Oboznov, A. Yu. Rusanov, A. V. Veretennikov, A. A. Golubov, and J. Aarts, Phys. Rev. Lett. 86, 2427 (2001).

    Article  ADS  Google Scholar 

  10. T. Kontos, M. Aprili, J. Lesueur, F. Genêt, B. Stephanidis, and R. Boursier, Phys. Rev. Lett. 89, 137007 (2002).

    Article  ADS  Google Scholar 

  11. V. V. Ryazanov, V. A. Oboznov, V. V. Bol’ginov, A. S. Prokof’ev, and A. K. Feofanov, Phys. Usp. 47, 732 (2004).

    Article  ADS  Google Scholar 

  12. S. Oh, D. Youm, and M. R. Beasley, Appl. Phys. Lett. 71, 2376 (1997).

    Article  ADS  Google Scholar 

  13. G. Deutscher and F. Meunier, Phys. Rev. Lett. 22, 395 (1969).

    Article  ADS  Google Scholar 

  14. T. W. Clinton and M. Johnson, Appl. Phys. Lett. 70, 9 (1997).

    Article  Google Scholar 

  15. T. W. Clinton and M. Johnson, J. Appl. Phys. 83, 318 (1998).

    Article  Google Scholar 

  16. T. W. Clinton and M. Johnson, J. Appl. Phys. 85, 3 (1999).

    Article  Google Scholar 

  17. T. W. Clinton and M. Johnson, Appl. Phys. Lett. 76, 15 (2000).

    Article  Google Scholar 

  18. L. R. Tagirov, Phys. Rev. Lett. 83, 2058 (1999).

    Article  ADS  Google Scholar 

  19. J. Gu, C.-Y. You, J. S. Jiang, J. Pearson, Ya. B. Bazaliy, and S. D. Bader, Phys. Rev. Lett. 89, 26 (2002).

    Article  Google Scholar 

  20. I. C. Moraru, W. P. Pratt, and N. O. Birge, Phys. Rev. Lett. 96, 037004 (2006).

    Article  ADS  Google Scholar 

  21. G.-X. Miao, A. V. Ramos, and J. Moodera, Phys. Rev. Lett. 101, 137001 (2008).

    Article  ADS  Google Scholar 

  22. J. Zhu, X. Cheng, C. Boone, and I. N. Krivorotov, Phys. Rev. Lett. 103, 027004 (2009).

    Article  ADS  Google Scholar 

  23. P. V. Leksin, N. N. Garif’yanov, I. A. Garifullin, J. Schumann, H. Vinzelberg, V. Kataev, R. Klingeler, O. G. Schmidt, and B. Büchner, Appl. Phys. Lett. 97, 102505 (2010).

    Article  ADS  Google Scholar 

  24. Ya. V. Fominov, A. A. Golubov, T. Yu. Karminskaya, M. Yu. Kupriyanov, R. G. Deminov, and L. R. Tagirov, JETP Lett. 91, 308 (2010).

    Article  ADS  Google Scholar 

  25. P. V. Leksin, N. N. Garif’yanov, I. A. Garifullin, J. Schumann, V. Kataev, O. G. Schmidt, and B. Büchner, Phys. Rev. Lett. 106, 067005 (2011).

    Article  ADS  Google Scholar 

  26. I. A. Garifullin, P. V. Leksin, N. N. Garif’yanov, A. A. Kamashev, Ya. V. Fominov, J. Schumann, Y. Krupskaya, V. Kataev, O. G. Schmidt, and B. Büchner, J. Magn. Magn. Mater. 373, 18 (2015).

    Article  ADS  Google Scholar 

  27. M. G. Blamire and J. W. A. Robinson, J. Phys.: Condens. Matter 26, 453201 (2014).

    ADS  Google Scholar 

  28. J. Linder and J. W. A. Robinson, Nat. Phys. 11, 307 (2015).

    Article  Google Scholar 

  29. N. G. Pugach, M. Safonchik, T. Champel, M. E. Zhitomirsky, E. Lähderanta, M. Eschrig, and C. Lacroix, Appl. Phys. Lett. 111, 162601 (2017).

    Article  ADS  Google Scholar 

  30. Q. Cheng and B. Jin, Phys. C (Amsterdam, Neth.) 473, 29 (2012).

  31. J. Zhu, I. N. Krivorotov, K. Halterman, and O. T. Valls, Phys. Rev. Lett. 105, 207002 (2010).

    Article  ADS  Google Scholar 

  32. F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod. Phys. 77, 1321 (2005).

    Article  ADS  Google Scholar 

  33. C. T. Wu and O. T. Valls, J. Supercond. Nov. Magn. 25, 2173 (2012).

    Article  Google Scholar 

  34. V. I. Zdravkov, J. Kehrle, G. Obermeier, D. Lenk, H.‑A. Krug von Nidda, C. Müller, M. Yu. Kupriyanov, A. S. Sidorenko, S. Horn, R. Tidecks, and L. R. Tagirov, Phys. Rev. B 87, 144507 (2013).

    Article  ADS  Google Scholar 

  35. N. Banerjee, C. B. Smiet, R. G. J. Smits, A. Ozaeta, F. S. Bergeret, M. G. Blamire, and J. W. A. Robinson, Nat. Commun. 5, 3048 (2014).

    Article  ADS  Google Scholar 

  36. X. L. Wang, A. Di Bernardo, N. Banerjee, A. Wells, F. S. Bergeret, M. G. Blamire, and J. W. A. Robinson, Phys. Rev. B 89, 140508(R) (2014).

  37. M. G. Flokstra, T. C. Cunningham, J. Kim, N. Satchell, G. Burnell, P. J. Curran, S. J. Bending, C. J. Kinane, J. F. K. Cooper, S. Langridge, A. Isidori, N. Pugach, M. Eschrig, and S. L. Lee, Phys. Rev. B 91, 060501(R) (2015).

  38. K. Dybko, P. Aleshkevych, M. Sawicki, and P. Przyslupski, J. Magn. Magn. Mater. 373, 48 (2015).

    Article  ADS  Google Scholar 

  39. D. Lenk, V. I. Zdravkov, J.-M. Kehrle, G. Obermeier, A. Ullrich, R. Morari, H.-A. Krug von Nidda, C. Müller, M. Yu. Kupriyanov, A. S. Sidorenko, S. Horn, R. G. Deminov, L. R. Tagirov, and R. Tidecks, Beilstein J. Nanotechnol. 7, 957 (2016).

    Article  Google Scholar 

  40. S. Voltan, A. Singh, and J. Aarts, Phys. Rev. B 94, 054503 (2016).

    Article  ADS  Google Scholar 

  41. Z. Feng, J. W. A. Robinson, and M. G. Blamire, Appl. Phys. Lett. 111, 042602 (2017).

    Article  ADS  Google Scholar 

  42. A. Srivastava, L. A. B. Olde Olthof, A. Di Bernardo, S. Komori, M. Amado, C. Palomares-Garcia, M. Alidoust, K. Halterman, M. G. Blamire, and J. W. A. Robinson, Phys. Rev. Appl. 8, 044008 (2017).

    Article  ADS  Google Scholar 

  43. E. Moen and O. T. Valls, Phys. Rev. B 95, 054503 (2017).

    Article  ADS  Google Scholar 

  44. Zh. Devizorova and S. Mironov, Phys. Rev. B 95, 144514 (2017).

    Article  ADS  Google Scholar 

  45. M. Alidoust and K. Halterman, Phys. Rev. B 97, 064517 (2018).

    Article  ADS  Google Scholar 

  46. A. A. Jara, C. Safranski, I. N. Krivorotov, C. T. Wu, A. N. Malmi-Kakkada, O. T. Valls, and K. Halterman, Phys. Rev. B 89, 184502 (2014).

    Article  ADS  Google Scholar 

  47. C. T. Wu, O. T. Valls, and K. Halterman, Phys. Rev. B 86, 014523 (2012).

    Article  ADS  Google Scholar 

  48. P. V. Leksin, N. N. Garif’yanov, A. A. Kamashev, A. A. Validov, Ya. V. Fominov, J. Schumann, V. Kataev, J. Thomas, B. Büchner, and I. A. Garifullin, Phys. Rev. B 93, 100502(R) (2016).

  49. J. Y. Gu, C.-Y. You, J. S. Jiang, J. Pearson, Y. B. Bazaliy, and S. D. Bader, Phys. Rev. Lett. 89, 267001 (2002).

    Article  ADS  Google Scholar 

  50. Y. Gu, G. B. Halász, J. W. A. Robinson, and M. G. Blamire, Phys. Rev. Lett. 115, 067201 (2015).

    Article  ADS  Google Scholar 

  51. A. Singh, S. Voltan, K. Lahabi, and J. Aarts, Phys. Rev. X 5, 021019 (2015).

    Google Scholar 

  52. A. A. Kamashev, P. V. Leksin, J. Schumann, V. Kataev, J. Thomas, T. Gemming, B. Büchner, and I. A. Garifullin, Phys. Rev. B 96, 024512 (2017).

    Article  ADS  Google Scholar 

  53. A. A. Kamashev, N. N. Garif’yanov, A. A. Validov, J. Schumann, V. Kataev, B. Büchner, Ya. V. Fominov, and I. A. Garifullin, JETP Lett. 110, 342 (2019).

    Article  ADS  Google Scholar 

  54. A. A. Kamashev, P. V. Leksin, N. N. Garif’yanov, A. A. Validov, J. Schumann, V. Kataev, B. Büchner, and I. A. Garifullin, J. Magn. Magn. Mater. 459, 7 (2018).

    Article  ADS  Google Scholar 

  55. A. A. Kamashev, N. N. Garif’yanov, A. A. Validov, J. Schumann, V. Kataev, B. Büchner, Ya. V. Fominov, and I. A. Garifullin, Beilstein J. Nanotechnol. 10, 1458 (2019).

    Article  Google Scholar 

  56. A. A. Kamashev, N. N. Garif’yanov, A. A. Validov, J. Schumann, V. Kataev, B. Büchner, Ya. V. Fominov, and I. A. Garifullin, Phys. Rev. B 100, 134511 (2019).

    Article  ADS  Google Scholar 

  57. P. V. Leksin, N. N. Garif’yanov, A. A. Kamashev, Ya. V. Fominov, J. Schumann, C. Hess, V. Kataev, B. Büchner, and I. A. Garifullin, Phys. Rev. B 91, 214508 (2015).

    Article  ADS  Google Scholar 

  58. P. V. Leksin, A. A. Kamashev, J. Schumann, V. E. Kataev, J. Thomas, B. Büchner, and I. A. Garifullin, Nano Res. 9, 1005 (2016).

    Article  Google Scholar 

  59. S. Husain, S. Akansel, A. Kumar, P. Svedlindh, and S. Chaudhary, Sci. Rep. 6, 20452322 (2016).

    Google Scholar 

  60. R. G. Deminov, L. R. Tagirov, R. R. Gaifullin, et al., J. Magn. Magn. Mater. 373, 16 (2015).

    Article  ADS  Google Scholar 

  61. M. Yu. Kuprianov and V. F. Lukichev, Sov. Phys. JETP 67, 1163 (1988).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to J. Schumann, V. Kataev, and B. Büchner from the Institute of Solid State and Materials Physics (IFW), Dresden, for constructive discussion.

Funding

The work by A.A.K. was subsidized in part by State program supporting the Kazan (Privolzh’ye) Federal University for elevating its competitiveness among leading global research and education centers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kamashev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamashev, A.A., Garif’yanov, N.N., Validov, A.A. et al. Superconducting Spin-Valve Effect in Structures with a Ferromagnetic Heusler Alloy Layer. J. Exp. Theor. Phys. 131, 311–321 (2020). https://doi.org/10.1134/S1063776120060126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120060126

Navigation