Skip to main content
Log in

Molecular Dynamics Simulation of Glass Transition of the Supercooled Zr–Nb Melt

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The glass transition of the supercooled Zr–Nb melt has been investigated by molecular dynamics simulation. The dependence of the critical glass transition rate on the percentage of Nb in the melt is obtained. It is found that the structure of amorphous Zr–Nb alloy is formed by interpenetrating icosahedral clusters. The dependences of the number of polyhedrons on the Nb percentage are obtained for main types of Voronoy polyhedrons. The increase in the number of icosahedrons corresponding to a larger number of neighbors is explained by the difference in the sizes of Zr and Nb atoms. It is shown that the splitting of the second peak of the radial distribution function and the increase in the number of icosahedral clusters in the amorphous structure occur simultaneously. The splitting of the second peak of the radial distribution function is explained by fixed distances between atoms in the system of interpenetrating clusters. Using several structural criteria, we have determined the glass-transition temperatures of a Zr–Nb melts with different percentages of Nb. The values of these temperatures are found to be in good agreement with one another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. I. V. Zolotukhin and Yu. E. Kalinin, Sov. Phys. Usp. 33, 720 (1990).

    Article  ADS  Google Scholar 

  2. T. Egami and D. Srolovitz, J. Phys. F 12, 2141 (1982).

    Article  ADS  Google Scholar 

  3. P. H. Gaskell, J. Non-Cryst. Sol. 75, 329 (1985).

    Google Scholar 

  4. Y. Waseda and H. S. Chen, Phys. Status Solidi A 49, 387 (1978).

    Article  ADS  Google Scholar 

  5. E. M. Kirova, G. E. Norman, and V. V. Pisarev, JETP Lett. 110, 359 (2019).

    Article  ADS  Google Scholar 

  6. X. J. Liu, Y. Xu, X. Hui, et al., Phys. Rev. Lett. 105, 155501 (2010).

    Article  ADS  Google Scholar 

  7. L. N. Kolotova, G. E. Norman, and V. V. Pisarev, Russ. J. Phys. Chem. A 89, 802 (2015).

    Article  Google Scholar 

  8. K. V. Reddy and S. Pal, Comput. Mater. Sci. 158, 324 (2019).

    Article  Google Scholar 

  9. H. W. Sheng, W. K. Luo, F. M. Alamgir, et al., Nature (London, U.K.) 439, 419 (2006).

    Article  ADS  Google Scholar 

  10. M. Hoare, Ann. N.Y. Acad. Sci. 279, 186 (1976).

    Article  ADS  Google Scholar 

  11. Y. D. Wei, P. Peng, Z. Z. Yan, et al., Comput. Mater. Sci. 123, 214 (2016).

    Article  Google Scholar 

  12. M. Wakeda, Y. Shibutani, S. Ogata, et al., Intermetallics 15, 139 (2007).

    Article  Google Scholar 

  13. Z. C. Xie, T. H. Gao, X. T. Guo, et al., Phys. B (Amsterdam, Neth.) 440, 130 (2014).

  14. Y. C. Liang, R. S. Liu, Y. F. Mo, et al., J. Alloys Compd. 597, 269 (2014).

    Article  Google Scholar 

  15. S. P. Pan, J. Y. Qin, W. M. Wang, et al., Phys. Rev. B 84, 092201 (2011).

    Article  ADS  Google Scholar 

  16. T. Fukunaga, K. Itoh, T. Otomo, et al., Intermetallics 14, 893 (2006).

    Article  Google Scholar 

  17. A. V. Evteev, A. T. Kosilov, and E. V. Levchenko, JETP Lett. 76, 104 (2002).

    Article  ADS  Google Scholar 

  18. I. S. Gordeev and S. V. Starikov, J. Exp. Theor. Phys. 128, 747 (2019).

    Article  Google Scholar 

  19. A. V. Nikulina, Vopr. At. Nauki Tekh., No. 1, 190 (2005).

  20. T. P. Chernyaeva and V. M. Gritsina, Vopr. At. Nauki Tekh., No. 2, 97 (2011).

  21. I. I. Deryavko, D. I. Zelenskii, I. G. Perepelkin, et al., Vestn. NYaTs RK, No. 2, 105 (2015).

    Google Scholar 

  22. D. E. Smirnova and S. V. Starikov, Comput. Mater. Sci. 129, 259 (2017).

    Article  Google Scholar 

  23. D. Y. Lin, S. S. Wang, D. L. Peng, et al., J. Phys.: Condens. Matter 25, 105404 (2013).

    ADS  Google Scholar 

  24. Y. Mishin, M. J. Mehl, and D. A. Papaconstantopoulos, Acta Mater. 53, 4029 (2005).

    Article  Google Scholar 

  25. S. Plimpton, J. Comp. Phys. 117, 1 (1995).

    Article  ADS  Google Scholar 

  26. N. N. Medvedev, Voronoi-Delaunay Method in Structural Studies of Noncrystalline Systems (Sib. Otdel. RAN, Novosibirsk, 2000) [in Russian].

    Google Scholar 

  27. D. S. Sanditov and M. I. Ojovan, Phys. Usp. 62, 111 (2019).

    Article  ADS  Google Scholar 

  28. H. R. Wendt and F. F. Abraham, Phys. Rev. Lett. 41, 1244 (1978).

    Article  ADS  Google Scholar 

  29. E. V. Levchenko, A. V. Evteev, S. Yu. Vakhmin, A. T. Kosilov, and A. Yu. Pryadil’shchikov, Phys. Met. Metallogr. 109, 563 (2010).

    Article  ADS  Google Scholar 

  30. A. Yu. Pryadilshchikov, A. T. Kosilov, A. V. Evteev, and E. V. Levchenko, J. Exp. Theor. Phys. 105, 1184 (2007).

    Article  ADS  Google Scholar 

  31. A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18, 015012 (2009).

    Article  ADS  Google Scholar 

  32. Yu. D. Tret’yakov, L. I. Martynenko, A. N. Grigor’ev, et al., Inorganic Chemistry. Chemistry of Elements, The School-Book for Higher School (Khimiya, Moscow, 2001), Vol. 1 [in Russian].

    Google Scholar 

  33. A. V. Bondarev, I. L. Bataronov, and I. M. Pashueva, Vestn. Voronezh. Tekh. Univ. 13, 122 (2017).

    Google Scholar 

  34. Y. Zhang, R. Ashcraft, M. I. Mendelev, et al., J. Chem. Phys. 145, 204505 (2016).

    Article  ADS  Google Scholar 

  35. S. R. Wilson and M. I. Mendelev, Philos. Mag. 95, 224 (2015).

    Article  ADS  Google Scholar 

  36. T. V. Tropin, G. Schulz, J. W. P. Schmelzer, et al., J. Non-Cryst. Sol. 409, 63 (2015).

    Google Scholar 

  37. N. Yu. Konstantinova, P. S. Popel’, and D. A. Yagodin, High Temp. 47, 336 (2009).

    Article  Google Scholar 

  38. V. M. Kuz’menko, B. G. Lazarev, V. I. Mel’nikov, et al., Ukr. Fiz. Zh. 21, 883 (1976).

    ADS  Google Scholar 

  39. T. V. Tropin, J. W. P. Schmelzer, and C. Schick, J. Non-Cryst. Sol. 357, 1291 (2011).

    Google Scholar 

  40. D. P. B. Aji and G. P. Johari, J. Chem. Phys. 142, 214501 (2015).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Interdepartmental Supercomputer Center of the Russian Academy of Sciences for the possibility to perform calculations using the MVS-10P computer cluster.

Funding

This study was supported by program no. 6 of the Presidium of the Russian Academy of Sciences “New approaches to obtaining and investigation of extremal state of matter” (coordinated by Acad. V.E. Fortov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Kliavinek.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kliavinek, S.S., Kolotova, L.N. Molecular Dynamics Simulation of Glass Transition of the Supercooled Zr–Nb Melt. J. Exp. Theor. Phys. 131, 284–297 (2020). https://doi.org/10.1134/S1063776120080105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120080105

Navigation