Skip to main content

Advertisement

Log in

Saint-Venant End Effects in the Plane Problem for Linearly Elastic Functionally Graded Materials

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

An isotropic elastic strip, with a continuous inhomogeneity profile for Young’s modulus is considered, subject to a self-equilibrated load on one of its axial ends and free of traction on the remainder of its surface boundaries. By taking advantage of the analytical flexibility of an exponential inhomogeneity profile, the full equations of linear theory of elasticity are employed to find the two-dimensional Saint-Venant decay rate in terms of an inhomogeneity parameter that measures gradation steepness in a Functionally Graded Material (FGM). The results show that softening axial inhomogeneity may be introduced to engineered FGM strips and beams to accelerate the decay of stresses. For a hardening axial inhomogeneity on the other hand, the end effects extend beyond a one-width-size distance from the loaded end. The plane problem end effects are shown to decay faster compared to the anti-plane shear counterparts, consistent with what is observed in homogeneous media. For inhomogeneity in the lateral direction from the core toward the outer edges, the qualitative behaviour changes with the degree of inhomogeneity. Whether the core is softer or harder relative to the outer edges, a steep lateral gradation of elastic modulus can significantly increase the decay length of end effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anlas, G., Lambros, J., Santare, M.H.: Dominance of asymptotic crack tip fields in elastic functionally graded materials. Int. J. Fract. 115(2), 193–204 (2002)

    Article  Google Scholar 

  2. Bartlett, N.W., Tolley, M.T., Overvelde, J.T., Weaver, J.C., Mosadegh, B., Bertoldi, K., Whitesides, G.M., Wood, R.J.: A 3d-printed, functionally graded soft robot powered by combustion. Science 349(6244), 161–165 (2015)

    Article  ADS  Google Scholar 

  3. Baxter, S.C., Horgan, C.O.: End effects for anti-plane shear deformations of sandwich structures. J. Elast. 40(2), 123–164 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baxter, S.C., Horgan, C.O.: Anti-plane shear deformations of anisotropic sandwich structures: end effects. Int. J. Solids Struct. 34(1), 79–98 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biria, A., Mandre, S., Venkadesan, M.: Mechanobiology of the ligament to bone insertion. Biophys. J. 112(3), 433 (2017)

    Article  ADS  Google Scholar 

  6. Borrelli, A., Horgan, C.O., Patria, M.C.: Exponential decay of end effects in anti-plane shear for functionally graded piezoelectric materials. Proc. R. Soc. Lond. Ser. A 460(2044), 1193–1212 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Chan, A.M., Horgan, C.O.: End effects in anti-plane shear for an inhomogeneous isotropic linearly elastic semi-infinite strip. J. Elast. 51(3), 227–242 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Y.F., Erdogan, F.: The interface crack problem for a nonhomogeneous coating bonded to a homogeneous substrate. J. Mech. Phys. Solids 44(5), 771–787 (1996)

    Article  ADS  Google Scholar 

  9. Choi, I., Horgan, C.O.: Saint-Venant end effects for plane deformation of sandwich strips. Int. J. Solids Struct. 14(3), 187–195 (1978)

    Article  MATH  Google Scholar 

  10. Delale, F., Erdogan, F.: Interface crack in a nonhomogeneous elastic medium. Int. J. Eng. Sci. 26(6), 559–568 (1988)

    Article  MATH  Google Scholar 

  11. Flavin, J.N.: Spatial-decay estimates for a generalized biharmonic equation in inhomogeneous elasticity. J. Eng. Math. 46(3–4), 241–252 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gu, P., Asaro, R.J.: Cracks in functionally graded materials. Int. J. Solids Struct. 34(1), 1–17 (1997)

    Article  MATH  Google Scholar 

  13. Guo, L.C., Noda, N.: Modeling method for a crack problem of functionally graded materials with arbitrary properties—piecewise-exponential model. Int. J. Solids Struct. 44(21), 6768–6790 (2007)

    Article  MATH  Google Scholar 

  14. Hemleben, S.: Modeling a spectrum of 3d printed materials for soft robots. Master’s thesis, Oregon State University, United States (2017)

  15. Horgan, C.O.: Recent developments concerning Saint-Venant’s principle: an update. Appl. Mech. Rev. 42(11), 295–303 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  16. Horgan, C.O.: Recent developments concerning Saint-Venant’s principle: a second update. Appl. Mech. Rev. 49(10S), S101–S111 (1996)

    Article  ADS  Google Scholar 

  17. Horgan, C.O., Carlsson, L.A.: Saint-Venant end effects for anisotropic materials. In: Beaumont, P., Zweben, C. (eds.) Comprehensive Composite Materials II, vol. 7, pp. 38–55. Oxford Academic Press, Oxford (2018). Chap. 7.3

    Chapter  Google Scholar 

  18. Horgan, C.O., Knowles, J.K.: Recent developments concerning Saint-Venant’s principle. In: Advances in Applied Mechanics, vol. 23, pp. 179–269. Elsevier, Amsterdam (1983)

    Google Scholar 

  19. Horgan, C.O., Miller, K.L.: Antiplane shear deformations for homogeneous and inhomogeneous anisotropic linearly elastic solids. J. Appl. Mech. 61, 23 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Horgan, C.O., Payne, L.E.: On the asymptotic behavior of solutions of linear second-order boundary-value problems on a semi-infinite strip. Arch. Ration. Mech. Anal. 124(3), 277–303 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Horgan, C.O., Quintanilla, R.: Saint-Venant end effects in antiplane shear for functionally graded linearly elastic materials. Math. Mech. Solids 6(2), 115–132 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kashtalyan, M.: Three-dimensional elasticity solution for bending of functionally graded rectangular plates. Eur. J. Mech. A, Solids 23(5), 853–864 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Knowles, J.K.: On Saint-Venant’s principle in the two-dimensional linear theory of elasticity. Arch. Ration. Mech. Anal. 21(1), 1–22 (1966)

    Article  MathSciNet  Google Scholar 

  24. Kovalenko, M.D., Shulyakovskaya, T.D.: Expansions in Fadle-Papkovich functions in a strip. Theory foundations. Mech. Solids 46(5), 721–738 (2011)

    Article  ADS  Google Scholar 

  25. Leseduarte, M.C., Quintanilla, R.: Saint-Venant decay rates for a non-homogeneous isotropic mixture of elastic solids in anti-plane shear. Int. J. Solids Struct. 42(9–10), 2977–3000 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Leseduarte, M.C., Quintanilla, R.: Saint-Venant decay rates for an anisotropic and non-homogeneous mixture of elastic solids in anti-plane shear. Int. J. Solids Struct. 45(6), 1697–1712 (2008)

    Article  MATH  Google Scholar 

  27. Leseduarte, M.C., Quintanilla, R.: Lower bounds of end effects for a nonhomogeneous isotropic linear elastic solid in anti-plane shear. Math. Mech. Solids 20(2), 140–156 (2015)

    Article  MathSciNet  Google Scholar 

  28. Leseduarte, M.C., Quintanilla, R.: Decay rates of Saint-Venant type for a functionally graded heat-conducting hollowed cylinder. Math. Mech. Solids 24(5), 1368–1386 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Leseduarte, M.C., Quintanilla, R.: Decay rates of Saint-Venant type for functionally graded heat-conducting materials. Int. J. Eng. Sci. 139, 24–41 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, X., Xie, J., Lipner, J., Yuan, X., Thomopoulos, S., Xia, Y.: Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett. 9(7), 2763–2768 (2009)

    Article  ADS  Google Scholar 

  31. MATLAB (2016) version 9.0 (R2016a). The Mathworks Inc., Natick, MA, United States

  32. Miller, K.L., Horgan, C.O.: Saint-Venant end effects for plane deformations of elastic composites. Mech. Compos. Mater. Struct. 2(3), 203–214 (1995)

    Article  Google Scholar 

  33. Oleinik, O.A., Yosifian, G.A.: Boundary value problems for second order elliptic equations in unbounded domains and Saint-Venant’s principle. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 4(2), 269–290 (1977)

    MathSciNet  MATH  Google Scholar 

  34. Rahbar, N., Soboyejo, W.O.: Design of functionally graded dental multilayers. Fatigue Fract. Eng. Mater. Struct. 34(11), 887–897 (2011)

    Article  Google Scholar 

  35. Scalpato, M.R., Horgan, C.O.: Saint-Venant decay rates for an isotropic inhomogeneous linearly elastic solid in anti-plane shear. J. Elast. 48(2), 145–166 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tan, Y., Hoon, S., Guerette, P.A., Wei, W., Ghadban, A., Hao, C., Miserez, A., Waite, J.H.: Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient. Nat. Chem. Biol. 11(7), 488 (2015)

    Article  Google Scholar 

  37. Timoshenko, S., Goodier, J.N.: Theory of Elasticity. McGraw Hill, New York (1970)

    MATH  Google Scholar 

  38. Toupin, R.A.: Saint-Venant’s principle. Arch. Ration. Mech. Anal. 18(2), 83–96 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  39. Waite, J.H., Lichtenegger, H.C., Stucky, G.D., Hansma, P.: Exploring molecular and mechanical gradients in structural bioscaffolds. Biochemistry 43(24), 7653–7662 (2004)

    Article  Google Scholar 

  40. Yang, Q., Zheng, B., Zhang, K., Zhu, J.: The eigenvalue problem and Saint-Venant decay rate for a nonhomogeneous semi-infinite strip. Acta Mech. Solida Sin. 27(6), 588–596 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from National Science and Engineering Council of Canada through the Postdoctoral Fellowship PDF - 488169 is appreciated, as well as fruitful discussions with Professors Lyes Kadem and Brian Seguin. The author is grateful to the reviewers and to Professor C. O. Horgan for their helpful comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aisa Biria.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Derivation of Compatibility Equation for an Inhomogeneous Isotropic Material

The two-dimensional compatibility equation requires strains to satisfy

$$ \mathscr{E}_{22,11}+\mathscr{E}_{11,22}-2\mathscr{E}_{12,12}=0. $$
(43)

In view of (3), the plane-stress constitutive assumptions in terms of the Airy stress function \(\phi \), for an isotropic material with inhomogeneity in the form \(E=E(x_{1},x_{2})\), is given by

$$ \begin{bmatrix} \mathscr{E}_{11} \\ \mathscr{E}_{22} \\ \mathscr{E}_{12}\end{bmatrix} =\frac{1}{E(x_{1},x_{2})} \begin{bmatrix} 1 & -\nu & 0 \\ -\nu & 1 & 0 \\ 0 & 0 & -(1+\nu ) \end{bmatrix} \begin{bmatrix} \phi _{,22} \\ \phi _{,11} \\ \phi _{,12} \end{bmatrix} . $$
(44)

Inserting (44) in the compatibility equation (43) yields

$$\begin{aligned} &\frac{1}{E}(\phi _{,1111}+\phi _{,2222}+2\phi _{,1122})+\big( \frac{1}{E}\big)_{,22}(\phi _{,22}-\nu \phi _{,11})+\big(\frac{1}{E} \big)_{,11}(\phi _{,11}-\nu \phi _{,22}) \\ &\quad {}+2(1+\nu )\big(\frac{1}{E}\big)_{,12}\phi _{,12} +2\big(\frac{1}{E} \big)_{,1}(\phi _{,111}+\phi _{,221})+2\big(\frac{1}{E}\big)_{,2}( \phi _{,112}+\phi _{,222})=0, \end{aligned}$$
(45)

which upon introducing the two-dimensional Laplace operator \(\Delta = \partial _{11}+\partial _{22}\) simplifies to

$$ \Delta \big(\frac{\Delta \phi }{E}\big)-(\nu +1)\big[\big(\frac{1}{E} \big)_{,11} \phi _{,22}+\big(\frac{1}{E}\big)_{,22} \phi _{,11}\big]+2(1+ \nu )\big(\frac{1}{E}\big)_{,12}\phi _{,12}=0. $$
(46)

This is the governing equation (4).

Appendix B: Determining the Sign of \(p\) from \(p^{2}-4q>0\) in (18)

Recall the definitions of \(p\) and \(q\) given by (15):

$$ p=2m(m+\gamma )-\gamma ^{2}\nu \qquad \text{and} \qquad q=m^{2}(m+ \gamma )^{2}, $$
(47)

by which

$$ p^{2}-4q=\gamma ^{2}\nu (\gamma ^{2}\nu -4m(m+\gamma )), $$
(48)

and since \(\nu \) is nonnegative by definition, if \(p^{2}-4q>0\), it follows that

$$ 4m(m+\gamma )< \gamma ^{2}\nu . $$
(49)

Now if \(m(m+\gamma )>0\), then \(2m(m+\gamma )<4m(m+\gamma )\), so that

$$ 2m(m+\gamma )< 4m(m+\gamma )< \gamma ^{2}\nu , $$
(50)

by which

$$ p=2m(m+\gamma )-\gamma ^{2}\nu < 0. $$
(51)

If on the other hand \(m(m+\gamma )\le 0\), \(p\) is negative or zero on account of being the sum of two nonpositive terms by its definition (47)1, irrespective of the sign of \({p^{2}-4q}\). As a result, \({p^{2}-4q>0}\) always implies that \(p\) is either negative or equal to zero.

Appendix C: Analysis of Equation (22)

a) If the roots \(\alpha _{1}\) and \(\alpha _{2}\) given by (18) are complex conjugate (\(p^{2}-4q<0\)):

Define the roots in terms of real numbers \(a\) and \(b\) as \(\alpha _{1}=a+ib\) and \(\alpha _{2}=a-ib\). Then, with the expansions

$$ \begin{aligned} &\sinh (a\pm ib)=\sinh (a)\cos (b)\pm i \cosh (a)\sinh (b) , \\ &\cosh (a\pm ib)=\cosh (a)\cos (b)\pm i \sinh (a)\sinh (b), \end{aligned} $$
(52)

equation (22) yields

$$ aw\sin (2bw)+bw\sinh (2aw)=0, $$
(53)

by which either \(a\) or \(b\) should vanish, leading to \(\alpha _{1}=\pm \alpha _{2}\).

b) If the roots \(\alpha _{1}\) and \(\alpha _{2}\) given by (18) are real (\(p^{2}-4q>0\)):

Consider the function \(\bar{f}(x)=x\tanh (x)\). It can be easily verified that it satisfies the following:

  • \(\bar{f}'(x)>0 \) for \(x>0\), so \(\bar{f}\) is increasing for \(x>0\)

  • \(\bar{f}'(x)<0 \) for \(x<0\), so \(\bar{f}\) is decreasing for \(x<0\)

  • \(\lim _{x \to \pm \infty } \bar{f}(x)=\infty \)

  • \(\bar{f}(x)>0\) for \(x\ne 0\).

From these properties and the intermediate value theorem, we have that for any \(L>0\), there are unique numbers \(a>0\) and \(b<0\) such that \(L=\bar{f}(a)=\bar{f}(b)\). Moreover, for any \(x\), \(\bar{f}(x)=\bar{f}(-x)\). It follows that equation (22), or its equivalent \(\bar{f}(w\alpha _{1})=\bar{f}(w\alpha _{2})\), leads to \(\alpha _{1}=\pm \alpha _{2}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biria, A. Saint-Venant End Effects in the Plane Problem for Linearly Elastic Functionally Graded Materials. J Elast 142, 121–134 (2020). https://doi.org/10.1007/s10659-020-09792-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-020-09792-7

Keywords

Mathematics Subject Classification

Navigation