Skip to main content
Log in

Phytochemical Mediated Sol–Gel Synthesis, Crystallographic Structure, Morphology and Optical Investigations on ZnO Nanoparticles

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Zinc oxide nanoparticles were synthesized through sol–gel technique using Azadirachta indica leaves extract. The formation of structure, crystallite parameters, size and morphology were studied through Fourier Transform Infrared spectroscopy, X-ray diffraction, Raman spectroscopy, Transmission Electron Microscopy (TEM) and Selected Area Electron Diffraction  data records. X-ray diffraction peaks revealed the presence of hexagonal wurtzite structure for ZnO nanoparticles. The crystallite size and lattice strain of the prepared sample were respectively obtained through measuring the X-ray diffraction peaks broadening and Hall Williamson analysis using anisotropic and isotropic models. The estimated crystallite size using TEM, Scherrer formula and Hall Williamson models were found in well agreement with each other. The optical properties were investigated from the UV–Vis reflectance data and the photoluminescence spectrum recorded at room temperature. The chromaticity color coordinates obtained from the photoluminescence spectrum shows that the biosynthesized ZnO nanoparticles can be useful for white luminescence applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Tamizhdurai, S. Sakthinathan, S. Chen, K. Shanthi, S. Sivasanker, and P. Sangeetha (2017). Sci. Rep. 7, 46372.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. T. V. Vineeshkumar, D. Rithesh Raj, S. Prasanth, N. V. Unnikrishnan, and C. Sudarsanakumar (2014). Opt. Mater. 37, 439–445.

    Article  CAS  Google Scholar 

  3. Z. Sabouri, A. Akbari, H. A. Hosseini, et al. (2019). J. Clust. Sci. 30, 1425–1434.

    Article  CAS  Google Scholar 

  4. Arun S. Prasad (2016). Mater. Sci. Semicond. Process 53, 79–83.

    Article  CAS  Google Scholar 

  5. X. Q. Zhang, S. L. Hou, H. B. Mao, J. Q. Wang, and Z. Q. Zhu (2010). Appl. Surf. Sci. 256, 3862–3865.

    Article  CAS  Google Scholar 

  6. B. J. Jin, S. H. Bae, S. Y. Lee, and S. Im (2000). Mater. Sci. Eng. B. 71, 301–306.

    Article  Google Scholar 

  7. N. L. Rosi and C. A. Mirkin (2005). Chem. Rev. 105, 1547–1562.

    Article  PubMed  CAS  Google Scholar 

  8. P. Amornpitoksuk, S. Suwanboon, S. Sangkanu, A. Sukhoom, J. Wudtipan, K. Srijan, et al. (2011). Powder Technol. 212, 432–438.

    Article  CAS  Google Scholar 

  9. P. Kumbhakar, D. Singh, C. S. Tiwary, and A. K. Mitra (2008). Chalcogenide Lett. 5, (12), 387–394.

    Google Scholar 

  10. M. Bandeira, A. L. Possan, S. S. Pavin, et al. (2020). Nano. Struct. Nano. Objects 24, 100532.

    Article  CAS  Google Scholar 

  11. M. Darroudi, Z. Sabouri, R. Kazemi Oskuee, A. Khorsand Zak, H. Kargar, and M. H. N. A. Hamid (2013). Ceramics International. 39, (8), 9195–9199.

    Article  CAS  Google Scholar 

  12. R. A. Ismail, A. K. Ali, M. M. Ismail, and K. I. Hassoon (2011). Appl. Nanosci. 1, (1), 45–49.

    Article  CAS  Google Scholar 

  13. I. A. Siddiquey, T. Furusawa, M. Sato, N. M. Bahadur, M. Mahbubul Alam, and N. Suzuki (2012). Ultrasonics Sonochem 19, 750–755.

    Article  CAS  Google Scholar 

  14. S. Vijayakumar, B. Vaseeharan, and R. Sudhakaran (2019). J Clust Sci 30, 1465–1479.

    Article  CAS  Google Scholar 

  15. P. Vasudevan, V. Vidyadharan, S. M. Simon, and N. V. Unnikrishnan (2020). J. Sci. Adv. Mater. Dev. 5, 242–249.

    Google Scholar 

  16. S. Ambika and M. Sundrarajan (2015). J. Photochem. Photobiol. B Biol. 149, 143–148.

    Article  CAS  Google Scholar 

  17. M. Asimuddin, Mohammed Rafi Shaik, Syed Farooq Adil, Mohammed Rafiq H. Siddiqui, Abdulrahman Alwarthan, Kaiser Jamil, Mujeeb Khan (2020). J. King. Saud. Univ. Sci. 32, 648-656

  18. B. S. Siddiqui, F. Afshan, T. Gulzar, and M. Hanif (2004). Phytochemistry 65, (16), 2363.

    Article  PubMed  CAS  Google Scholar 

  19. B. S. Tiwary (1985). Assoc. Phys. India. 33, (12), 817.

    CAS  Google Scholar 

  20. K. Jayasankar, B. K. Abhishek Pandey, and Siddhartha Das Mishra (2016). Mater. Chem. Phys. 171, 195–200.

    Article  CAS  Google Scholar 

  21. N. S. Gonçalves, J. A. Carvalho, Z. M. Lima, and J. M. Sasaki (2012). Mater. Lett. 72, 36–38.

    Article  CAS  Google Scholar 

  22. K. Venkateswarlu, A. Chandra Bose, and N. Rameshbabu (2010). Physica B Condens. Matter. 405, 4256–4261.

    CAS  Google Scholar 

  23. R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, and A. C. Bose (2009). Solid State Commun. 149, 1919–1923.

    Article  CAS  Google Scholar 

  24. A. Khorsand Zak and W. H. A. Majid (2010). Ceram. Int. 36, 1905–1910.

    Article  CAS  Google Scholar 

  25. G. Sangeetha, S. Rajeshwari, and R. Venkatesh (2011). Mater. Res. Bull. 46, 2560–2566.

    Article  CAS  Google Scholar 

  26. E. Nagaraj, P. Shanmugam, K. Karuppannan, T. Chinnasamy, and S. Venugopal (2020). New J. Chem. 44, 2166–2179.

    Article  CAS  Google Scholar 

  27. S. Fakhari, M. Jamzad, and H. K. Fard (2019). Green Chem. Lett. Rev 12, (1), 19–24.

    Article  CAS  Google Scholar 

  28. T. D. Malevu and R. O. Ocaya (2014). Int. J. Electrochem. Sci. 9, 8011–8023.

    CAS  Google Scholar 

  29. P. Bindu and S. Thomas (2014). J. Theor. Appl. Phys. 8, 123–134.

    Article  Google Scholar 

  30. L. Shen, et al. (2006). Nanotechnology. 17, 5117–5123.

    Article  CAS  Google Scholar 

  31. V. Mote, Y. Purushotham, and B. Dole (2012). J. Theor. Appl. Phys. 6, 6.

    Article  Google Scholar 

  32. V. Biju, N. Sugathan, V. Vrinda, et al. (2008). J. Mater. Sci. 43, 1175–1179.

    Article  CAS  Google Scholar 

  33. A. F. Jaramillo, R. Baez-Cruz, L. F. Montoya, C. Medinam, E. Pérez-Tijerina, F. Salazar, D. Rojas, and M. F. Melendrez (2017). Ceramics. Int. 43, 11838–11847.

    Article  CAS  Google Scholar 

  34. Y. W. Chen, Y. C. Liu, S. X. Lu, C. S. Xu, C. L. Shao, C. Wang, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan (2015). J. Chem. Phys. 123, 134701.

    Article  CAS  Google Scholar 

  35. J. G. Ma, Y. C. Liu, R. Mu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan (2004). J. Vac. Sci. Technol. B 22, 94–98.

    Article  CAS  Google Scholar 

  36. M. Gautam, M. Verma, and G. Misra (2011). J. Biomed. Nanotechnol. 7, 161–162.

    Article  PubMed  CAS  Google Scholar 

  37. J. W. Chan, H. Winhold, M. H. Corzett, J. M. Ulloa, M. Cosman, R. Balhorn, and T. Huser (2007). Raman Spectroscopy. Cytometry Part A. 71A, 468–474.

    Article  CAS  Google Scholar 

  38. K. Maquelin, C. Kirschner, L. P. Choo-Smith, N. van den Braak, H. P. Endtz, and D. G. Naumann (2002). J. Pupp. J. Microbiol. Methods 51, 255–271.

    Article  CAS  Google Scholar 

  39. L. He, Y. Liu, A. Mustapha, and M. Lin (2011). Microbiological Research 166, 207–215.

    Article  PubMed  CAS  Google Scholar 

  40. P. Mohammad and H. Fozia (2014). J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2014.07.001.

    Article  Google Scholar 

  41. M. S. Samuel, L. Bose, and K. C. George (2009). SB Academic Review. XVI, (1), 57–65.

    Google Scholar 

  42. A. Khorsand Zak, W. H. Abd Majid, M. R. Mahmoudian, M. Darroudi, and R. Yousefi (2013). Adv Powder Technol. 24, 618–624.

    Article  CAS  Google Scholar 

  43. Juan Estrada-Urbina, Alejandro Cruz-Alonso, Martha Santander-González, Abraham Méndez-Albores, and Alma Vázquez-Durán (2018). Nanomaterials 8, 247.

    Article  PubMed Central  CAS  Google Scholar 

  44. Jun Zhang, Junhua Xi, and Zhenguo Ji (2011). J. Mater. Chem. 22, 17700–17708.

    Article  CAS  Google Scholar 

  45. L. Irimpan, V. Nampoori, P. Radhakrishnan, A. Deepthy, and B. Krishnan (2007). J. Appl. Phys. 102, 063524.

    Article  CAS  Google Scholar 

  46. J. H. Zhao, et al. (2015). Optik–Int. J. Light Electron Opt. 127, (3), 1421–1423.

    Article  CAS  Google Scholar 

  47. D. Raoufi (2013). J. Luminescence. 134, 213–219.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prathibha Vasudevan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasudevan, P., Prasad, A.S. Phytochemical Mediated Sol–Gel Synthesis, Crystallographic Structure, Morphology and Optical Investigations on ZnO Nanoparticles. J Clust Sci 32, 1253–1260 (2021). https://doi.org/10.1007/s10876-020-01891-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01891-8

Keywords

Navigation