Skip to main content
Log in

Temperature Dependence on State Energies and Transition Frequency of Polaron in a Quantum Well with Asymmetric Gaussian Potential: Strong Coupling Method

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In the present work, the influence of temperature effect on polaron in a quantum well (QW) with asymmetric Gaussian potential (AGP). By employing strongly coupling method of Pekar variational (SCMPV), the ground state (GS), the first-excited state (FES) energies and transition frequency (TF) of the polaron are derived. The state-energies and the TF as relationship of the temperature T and the electron phonon coupling strength (EPCS) are obtained by using quantum statistics theory (QST). We have found that the state-energies and the TF increase when the temperature is increasing. The states-energies and the TF are decreased with raising the EPCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akimov, I.A., Godde, T., Kavokin, K.V., Yakovlev, D.R., Reshina, I.I., Sedova, I.V., Sorokin, S.V., Ivanov, S.V., Kusrayev, Y.G., Bayer, M.: Dynamics of exciton magnetic polarons in CdMnSe/CdMgSe quantum wells: Effect of self-localization. Phys. Rev. B. 95, 155303 (2017)

    Article  ADS  Google Scholar 

  2. Zhao, F., Guo, Z.Z., Zhu, J.: Superlattice. Microst. 98, 129 (2016)

    Article  ADS  Google Scholar 

  3. Maslov, A.Y., Proshina, O.V.: Phys. Status Solidi C. 13, 507 (2016)

    Article  ADS  Google Scholar 

  4. Sun, Y., Xiao, J.L.: Superlattice. Microst. 145, 106617 (2020)

    Article  Google Scholar 

  5. Saravanan, S., Peter, A.J., Lee, C.W.: J. Lumin. 169, 86 (2016)

    Article  Google Scholar 

  6. Wu, S.D., He, H., Guo, P.F.: Phys. E. 118, 6 (2020)

    Google Scholar 

  7. Rylands, C.: Phys. Rev. B. 101, 8 (2020)

    Article  Google Scholar 

  8. Li, T.: Phys. Rev. B. 100, 6 (2019)

    Google Scholar 

  9. Zhou, L.L., Zeng, Z.Y., Zhou, X.Y., Wang, Y.G.: Phys. Rev. B. 102, 6 (2020)

    Google Scholar 

  10. Schulenborg, J., Wegewijs, M.R., Splettstoesser, J.: Appl. Phys. Lett. 116, 5 (2020)

    Article  Google Scholar 

  11. Muckel, F., Barrows, C.J., Graf, A., Schmitz, A., Erickson, C.S., Gamelin, D.R., Bacher, G.: Current-Induced Magnetic Polarons in a Colloidal Quantum-Dot Device. Nano Lett. 17, 4768–4773 (2017)

    Article  ADS  Google Scholar 

  12. Szafran, B.: Phys. Rev. B. 101, 8 (2020)

    Google Scholar 

  13. Korovin, L.I., Lang, I.G., Pavlov, S.T.: JETP Lett. 65, 532 (1997)

    Article  ADS  Google Scholar 

  14. Bezant, C.D., Chamberlain, J.M., Pellemans, H.P.M., Murdin, B.N., Batty, W., Henini, M.: Semicond. Sci. Technol. 14, L25 (1999)

    Article  ADS  Google Scholar 

  15. Minch, J., Park, S.H., Keating, T., Chuang, S.L.: IEEE J. Quantum Electron. 35, 771 (1999)

    Article  ADS  Google Scholar 

  16. Comas, F., Trallero-Giner, C., Riera, R.: Phys. Rev. B. 39, 5907 (1989)

    Article  ADS  Google Scholar 

  17. Hai, G.Q., Peeters, F.M., Devreese, J.T.: Phys. Rev. B. 48, 4666 (1993)

    Article  ADS  Google Scholar 

  18. Chen, Z., Yao, D., Zhang, X., Fang, T.: Microelectron. J. 39, 1654 (2008)

    Article  Google Scholar 

  19. Wu, J., Guo, K., Liu, G.: Polaron effects on nonlinear optical rectification in asymmetrical Gaussian potential quantum wells with applied electric fields. Physica B. 446, 59–62 (2014)

    Article  ADS  Google Scholar 

  20. Xiao, J.L.: J. Low Temp. Phys. 192, 41 (2018)

    Article  ADS  Google Scholar 

  21. Sun, B.X., Xiao, J.L.: J Neimenguu Natl Univ. 34, 5 (2019)

    Google Scholar 

  22. Qiu, W., Xiao, J.L., Cai, C.Y.: J. Low Temp. Phys. 198, 233 (2020)

    Article  ADS  Google Scholar 

  23. Xiao, J.L.: Superlattice. Microst. 135, 106279 (2019)

    Article  Google Scholar 

  24. Lee, T.D., Low, F.E., Pines, D.: Phys. Rev. 90, 297 (1953)

    Article  MathSciNet  ADS  Google Scholar 

  25. Khordad, R., Goudarzi, S., Bahramiyan, H.: Effect of temperature on lifetime and energy states of bound polaron in asymmetrical Gaussian quantum well. Indian J Phys. 90, 659–664 (2016)

    Article  ADS  Google Scholar 

  26. Liu, X., Zou, L.L., Liu, C., Zhang, Z.H., Yuan, J.H.: The nonlinear optical rectification and second harmonic generation in asymmetrical Gaussian potential quantum well: Effects of hydrostatic pressure, temperature and magnetic field. Opt. Mater. 53, 218–223 (2016)

    Article  ADS  Google Scholar 

  27. Bai, X.F., Wei, X.: Influences of the impurity and magnetic field on the probability density and the period of the asymmetric Gaussian potential qubit. Opt. Quant. Electron. 51, 378 (2019)

    Article  Google Scholar 

  28. Bai, X.F., et al.: Iran J Sci Technol Trans A Sci. 43, 2027 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to the National Science Foundation of China (No.11464033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Sun or Jing-Lin Xiao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, ZH., Miao, XJ., Sun, Y. et al. Temperature Dependence on State Energies and Transition Frequency of Polaron in a Quantum Well with Asymmetric Gaussian Potential: Strong Coupling Method. Int J Theor Phys 59, 3418–3425 (2020). https://doi.org/10.1007/s10773-020-04600-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04600-3

Keywords

PACS Numbers

Navigation