Skip to main content
Log in

Orogenic Volcanism in Eastern Kazakhstan: Composition, Age, and Geodynamic Position

  • Published:
Geotectonics Aims and scope

Abstract

Studies of volcanic rocks in orogenic troughs of Eastern Kazakhstan were carried out. The troughs were formed at late-orogenic stages of evolution of Hercynian Altai collision system. Volcanic rocks are represented by basalts, andesites, dacites and rhyolites. Based on geochemical and isotopic data, the basalts and andesites derived from mafic magmas that formed as a result of partial melting of garnet peridotites in the upper mantle under the orogen. U–Pb zircon data prove two volcanic stages: more-scaled Middle Carboniferous (~311 Ma) and less-scaled Early Permian (297–290 Ma). Basalts and andesites in lower parts of the orogenic troughs and independent dacite-rhyolite structures were formed at the Middle Carboniferous stage. Parental mafic magmas were formed as a result of partial melting of mantle substrates in local transtensional zones along large shear faults. The formation of dacites and rhyolites could have been caused by partial melting of crustal substrates under effect of mafic magmas. Transtensional movements in the lithosphere of orogenic belts may indicate the beginning of collapse of orogens. A smaller volume of basalts and andesites formed at the Early Permian stage. Geochemical data prove the independent episode of partial melting in upper mantle. Synchronous basalts and andesites also appeared at wide territory in Tian Shan, Central Kazakhstan, and Central and Southern Mongolia. Early Permian volcanism indicates general extension of the lithosphere at the postorogenic stages. Large-scaled Early Permian mafic and granitoid magmatism in Central Asia has been interpreted in recent years as the Tarim Large Igneous Province caused by Tarim mantle plume activity. Thus, the extension of the lithosphere and associated volcanism in the Early Permian can be an indicator of the onset of the plume–lithosphere interaction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. M. M. Buslov, “Tectonics and geodynamics of the Central Asian Foldbelt: The role of Late Paleozoic large-amplitude strike-slip faults,” Russ. Geol. Geophys. 52, 52–71 (2011).

    Article  Google Scholar 

  2. A. G. Vladimirov, N. N. Kruk, S. N. Rudnev, and S. V. Khromykh, “Geodynamics and granitoid magmatism of collisional orogens,” Geol. Geofiz. 44, 1321–1338 (2003).

    Google Scholar 

  3. N. I. Volkova, V. V. Khlestov, V. P. Sukhorukov, and M. V. Khlestov, “Geochemistry of metamorphosed pillow basalts of the Chara Zone, NE Kazakhstan,” Dokl. Earth Sci. 467, 350–354 (2016).

    Article  Google Scholar 

  4. K. E. Degtyarev, K. N. Shatagin, V. P. Kovach, and A. A. Tretyakov, “The formation processes and isotopic structure of continental crust of the Chingiz Range Caledonides (Eastern Kazakhstan),” Geotectonics 49, 485–514 (2015).

    Article  Google Scholar 

  5. N. L. Dobretsov, A. S. Borisenko, A. E. Izokh, and S. M. Zhmodik, “A thermochemical model of Eurasian Permo-Triassic mantle plumes as a basis for prediction and exploration for Cu-Ni-PGE and rare-metal ore deposits,” Russ. Geol. Geophys. 51, 903–924 (2010).

    Article  Google Scholar 

  6. P. V. Ermolov, A. G. Vladimirov, A. E. Izokh, N. V. Polyanskii, V. S. Kuzebnyi, P. S. Revyakin, and V. D. Bortsov, Orogenic Magmatism of Ophiolitic Belts: Case Study of East Kazakhstan (Nauka, Novosibirsk, 1983) [in Russian].

    Google Scholar 

  7. L. P. Zonenshain, M. I. Kuz’min, and L. M. Natapov, Plate Tectonics in the Territory of USSR (Nedra, Moscow, 1990), Vol. 1 [in Russian].

    Google Scholar 

  8. V. I. Kovalenko, A. M. Kozlovsky, and V. V. Yarmolyuk, “Comendite-bearing subduction-related volcanic associations in the Khan-Bogd area, southern Mongolia: Geochemical data,” Petrology 18, 571–595 (2010).

    Article  Google Scholar 

  9. A. M. Kozlovsky, V. V. Yarmolyuk, A. V. Travin, E.  B. Sal’nikova, I. V. Anisimova, Yu. V. Plotkina, V. M. Savatenkov, A. M. Fedoseenko, and S. Z. Yakovleva, “Stages and regularities in the development of Late Paleozoic anorogenic volcanism in the southern Mongolia Hercynides,” Dokl. Earth Sci. 445, 811–817 (2012).

    Article  Google Scholar 

  10. A. M. Kurchavov, “Analysis of magmatism in the Central Kazakhstan fault system,” Geotektonika, No. 1, 87–95 (1983).

    Google Scholar 

  11. A. M. Kurchavov and V. V. Yarmolyuk, “Distribution of continental Permian volcanics of Central Asia and its tectonic interpretation,” Geotektonika, No. 4, 75–89 (1984).

    Google Scholar 

  12. V. V. Lopatnikov, E. P. Izokh, P. V. Ermolov, A. P. Ponomareva, and A. S. Stepanov, Magmatism and Ore-Bearing Potential of the Kalba–Narym Zone, East Kazakhstan (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  13. A. A. Mossakovskii, Orogenic Structures and Volcanism of Paleozoids of Eurasia (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  14. A. A. Mossakovskii, S. V. Ruzhentsev, S. G. Samygin, and T. N. Kheraskova, “Central Asian Fold Belt: Geodynamic evolution and formation history,” Geotektonika, No. 6, 3–32 (1993).

    Google Scholar 

  15. S. V. Khromykh, M. L. Kuibida, and N. N. Kruk, “Petrogenesis of high-temperature siliceous melts in volcanic structures of the Altai collisional system of Hercynides (Eastern Kazakhstan),” Russ. Geol. Geophys. 52, 411–420 (2011).

    Article  Google Scholar 

  16. S. V. Khromykh, A. G. Vladimirov, A. E. Izokh, A. V. Travin, I. R. Prokop’ev, E. Azimbaev, and S. S. Lobanov, “Petrology and geochemistry of gabbro and picrites from the Altai collisional system of Hercynides: Evidence for the activity of the Tarim plume,” Russ. Geol. Geophys. 54, 1288–1304 (2013).

    Article  Google Scholar 

  17. V. B. Khubanov, M. D. Buyantuev, and A. A. Tsygankov, “U–Pb dating of zircons from PZ3–MZ igneous complexes of Transbaikalia by sector-field mass spectrometry with laser sampling: Technique and comparison with SHRIMP,” Russ. Geol. Geophys. 57, 190–205 (2016).

    Article  Google Scholar 

  18. V. V. Yarmolyuk, M. I. Kuzmin, and A. M. Kozlovsky, “Late Paleozoic-Early Mesozoic within-plate magmatism in North Asia: Traps, rifts, giant batholiths, and the geodynamics of their origin,” Petrology 21, 101–126 (2013).

    Article  Google Scholar 

  19. L. P. Black, S. L. Kamo, C. M. Allen, D. W. Davis, J. N. Aleinikoff, J. W. Valley, R. Mundil, I. H. Campbell, R. J. Korsch, I. S. Williams, and C. Foudoulis, “Improved Pb-206/U-218 microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards,” Chem. Geol. 205, 115–140 (2004).

    Article  Google Scholar 

  20. W. V. Boynton, “Cosmochemistry of the rare earth elements: Meteorite studies,” in Rare Earth Element Geochemistry, Ed. by P. Henderson (Elsevier, Amsterdam, 1984), pp. 63–114.

    Google Scholar 

  21. Y. Branquet, C. Gumiaux, S. Sizaret, L. Barbanson, B. Wang, D. Cluzel, G. R. Li, and A. Delaunay, “Synkinematic mafic/ultramafic sheeted intrusions: Emplacement mechanism and strain restoration of the Permian Huangshan Ni–Cu ore belt (Eastern Tianshan, NW China),” J. Asian Earth Sci. 56, 240–257 (2012).

    Article  Google Scholar 

  22. J. F. Chen, B. F. Han, J. Q. Ji, L. Zhang, Zh. Xu, G. Q. He, and T. Wang, “Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China,” Lithos 115, 137–152 (2010).

    Article  Google Scholar 

  23. R. Gao, L. Xiao, F. Pirajno, G.-C. Wang, X.-X. He, G. Yang, and Sh.-W. Yan, “Carboniferous–Permian extensive magmatism in the West Junggar, Xinjiang, northwestern China: Its geochemistry, geochronology, and petrogenesis,” Lithos 204, 125–143 (2014).

    Article  Google Scholar 

  24. W. L. Griffin, W. J. Powell, N. J. Pearson, and S. Y. O’Reilly, “GLITTER: Data reduction software for laser ablation ICP-MS,” in Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues, Vol. 40 of Short Course Ser.-Mineral. Assoc. Can., Ed. by P. J. Sylvester (Mineral. Assoc. Can., 2008), pp. 307–311.

  25. T. M. Irvine and W. R. Baragar, “A guide to the chemical classification of common volcanic rocks,” Can. J. Earth Sci. 8, 523–548. (1971).

    Article  Google Scholar 

  26. S. V. Khromykh, P. D. Kotler, A. E. Izokh, and N. N. Kruk, “A review of Early Permian (300–270 Ma) magmatism in Eastern Kazakhstan and implications for plate tectonics and plume interplay,” Geodyn. Tectonophys. 10, 79–99 (2019). https://doi.org/10.5800/GT-2019-10-1-0405

    Article  Google Scholar 

  27. S. V. Khromykh, A. E. Izokh, A. V. Gurova, M. V. Cherdantseva, I. A. Savinsky, and A. V. Vishnevsky, “Syncollisional gabbro in the Irtysh Shear Zone, Eastern Kazakhstan: Compositions, geochronology, and geodynamic implications,” Lithos 346–347 (2019). https://doi.org/10.1016/j.lithos.2019.07.011

  28. D. Konopelko, S. A. Wilde, R. Seltmann, R. L. Romer, and Yu. S. Biske, “Early Permian intrusions of the Alai range: Understanding tectonic settings of Hercynian post-collisional magmatism in the South Tien Shan, Kyrgyzstan,” Lithos 302–303, 405–420 (2018).

    Article  Google Scholar 

  29. K. R. Ludwig, User’s Manual for Isoplot 3.00. A Geochronological Toolkit for Microsoft Excel, No. 4 of Berkeley Geochronol. Center. Spec. Publ. (2003).

  30. E. A. K. Middlemost, “Naming materials in the magma/igneous rock system,” Earth Sci. Rev. 37, 215–224 (1994).

    Article  Google Scholar 

  31. J. A. Pearce, “Trace element characteristics of lavas from destructive plate boundaries,” in Andesites: Orogenic Andesites and Related Rocks, Ed. by R. S. Thorpe (Wiley, Chichester, 1982), pp. 525–548.

    Google Scholar 

  32. F. Pirajno, R. E. Ernst, A. S. Borisenko, G. S. Fedoseev, and E. A. Naumov, “Intraplate magmatism in Central Asia and China and associated metallogeny,” Ore Geol. Rev. 35, 114–136 (2009).

    Article  Google Scholar 

  33. I. Yu. Safonova, V. A. Simonov, E. V. Kurganskaya, O. T. Obut, R. L. Romer, and R. Seltmann, “Late Paleozoic oceanic basalts hosted by the Char suture-shear zone, East Kazakhstan: Geological position, geochemistry, petrogenesis and tectonic setting,” J. Asian Earth Sci. 49, 20–39 (2012).

    Article  Google Scholar 

  34. I. Safonova, T. Komiya, R. L. Romer, V. Simonov, R. Seltmann, S. Rudnev, S. Yamamoto, and M. Sun, “Supra-subduction igneous formations of the Char ophiolite belt, East Kazakhstan,” Gondwana Res. 59, 159–179 (2018).

    Article  Google Scholar 

  35. J. Slama, J. Kosler, D. J. Condon, J. L. Crowley, A.  Gerdes, J. M. Hanchar, M. S. A. Horstwood, G. A. Morris, L. Nasdala, N. Norberg, U. Schaltegger, N. Schoene, M. N. Tubrett, and M. J. Whitehouse, “Plesovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis,” Chem. Geol. 249, 1–35 (2008).

    Article  Google Scholar 

  36. S. R. Taylor and S. M. McLennan, The Continental Crust: Its composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks (Blackwell, Oxford, 1985).

    Google Scholar 

  37. B. Wang, D. Cluzel, L. Shu, M. Faure, J. Charvet, Y. Chen, S. Meffre, and K. de Jong, “Evolution of calc-alkaline to alkaline magmatism through Carboniferous convergence to Permian transcurrent tectonics, western Chinese Tianshan,” Int. J. Earth Sci. 98, 1275–1298 (2009).

    Article  Google Scholar 

  38. B. F. Windley, D. Alexeiev, W. Xiao, A. Kröner, and G. Badarch, “Tectonic models for accretion of the Central Asian Orogenic Belt,” J. Geol. Soc. (London, U. K.) 164, 31–47 (2007).

    Article  Google Scholar 

  39. Y-G. Xu, X. Wei, Z-Y. Luo, H-Q. Liu, and J. Cao, “The Early Permian Tarim Large Igneous Province: Main characteristics and a plume incubation model,” Lithos 204, 20–35 (2014).

    Article  Google Scholar 

  40. G. Yang, Y. Li, I. Safonova, S. Yi, L. Tong, and R. Seltmann, “Early Carboniferous volcanic rocks of West Junggar in the western Central Asian Orogenic Belt: Implications for a supra-subduction system,” Int. Geol. Rev. 56, 823–844 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to E.M. Sapargaliev (Altai Geological and Ecological Institute, Ust-Kamenogorsk, Kazakhstan) for assistance in the field works; N.G. Karmanova and I.V. Nikolaeva (both at the IGM SB RAS, Novosibirsk, Russia) for analytical rock composition studies; T.B. Bayanova (GI KSC RAS, Apatity, Russia) for Sm‒Nd isotope studies; and V.Yu. Kiseleva (IGM SB RAS) for Rb–Sr isotope studies. The authors are also grateful to the reviewers, V.V. Yarmolyuk and T.N. Kheraskova, whose comments helped to significantly improve the manuscript.

Funding

The study was carried out according to the state task of IGM SB RAS (Novosibirsk, Russia), with the support of the Russian Foundation for Basic Research (project nos. 17-05-00825, 20-05-00346, 20-35-70 076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Khromykh.

Additional information

Reviewers: T.N. Kheraskova, V.V. Yarmolyuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khromykh, S.V., Semenova, D.V., Kotler, P.D. et al. Orogenic Volcanism in Eastern Kazakhstan: Composition, Age, and Geodynamic Position. Geotecton. 54, 510–528 (2020). https://doi.org/10.1134/S0016852120040044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852120040044

Keywords:

Navigation