Skip to main content
Log in

Spatial Analysis on Gold Mineralization in Southwest Saqqez Using Point Pattern, Fry and Fractal Analyses

  • Published:
Geotectonics Aims and scope

Abstract

The Baneh- Saqqez zone is part of the Sanandaj‒Sirjan Zone, northwest of Iran. Generally, this zone is recognized as a gold bearing zone, and the mineralization in it is controlled by faults. In this research, structural lineaments were extracted using Landsat 8 (OLI) image, in which the main lineaments trend NE‒SW, EW and NW‒SE. Spatial distributions of the mineralization are examined by using the point pattern, Fry and fractal analyses. The pattern of structural controls on the gold mineralization in southwest Saqqez, is almost regular, and the trend of gold mineralization and Fry points show NE‒SW and EW trends. Comparison of rose diagrams for the Fry analysis final translation points and faults in southwest Saqqez show that the orientations of mineralization are similar to NE‒SW and EW trending faults and that the mineralization intersects the NW‒SW trending faults. The results of fractal analysis suggest that gold occurrences in the area have higher fractal dimension. The deep regional faults cause a way for ore-bearing fluids to migrate and control the emplacement of the intrusive bodies and the position of ore mineralization in the Saqqez‒Baneh sub-zone. On that basis, a survey of spatial data and its relationship to structural features can be useful for future exploration and discovery of new occurrences of gold mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Z. Adiri, A. El Harti, A. Jellouli, J. Maacha, and E. M. Bachaoui, “Lithological mapping using Landsat 8 OLI and Terra ASTER multispectral data in the Bas Drâa inlier, Moroccan Anti Atlas,” J. Appl. Remote Sens. 10 (2016). https://doi.org/10.1117/1.JRS.10.016005

  2. Z. Adiri, A. El Harti, A. Jellouli, R. Lhissou, L. Maacha, M. Azmi, and E. M. Bachaoui, “Comparison of Landsat-8, ASTER and Sentinel 1 satellite remote sensing data in automatic lineaments extraction: A case study of Sidi Flah‒Bouskour inlier, Moroccan Anti Atlas,” Adv. Space Res. 60, 2355‒2367 (2017).

    Article  Google Scholar 

  3. P. Afzal, H. D. Ahari, N. R. Omran, and F. Aliyari, “Delineation of gold mineralized zones using concentration–volume fractal model in Qolqoleh gold deposit, NW Iran,” Ore Geol. Rev. 55, 125‒133 (2013).

    Article  Google Scholar 

  4. P. Afzal, Y. F. Alghalandis, A. Khakzad, P. Moarefvand, and N. R. Omran, “Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling,” J. Geochem. Explor. 108, 220‒232 (2011).

    Article  Google Scholar 

  5. F. Aliyari, E. Rastad, and H. Zengqian, “Orogenic gold mineralization in the Qolqoleh deposit, northwestern Iran,” Resour. Geol. 57, 269‒282 (2007).

    Article  Google Scholar 

  6. F. Aliyari, E. Rastad, and M. Mohajjel, “Gold deposits in the Sanandaj–Sirjan Zone: Orogenic gold deposits or intrusion-related gold systems?,” Resour. Geol. 62, 296‒315 (2012).

    Article  Google Scholar 

  7. F. Aliyari, E. Rastad, M. Mohajjel, and G. B. Arehart, “Geology and geochemistry of D–O–C isotope systematics of the Qolqoleh gold deposit, Northwestern Iran: Implications for ore genesis,” Ore Geol. Rev. 36, 306‒314 (2009).

    Article  Google Scholar 

  8. F. Aliyari, MS Thesis (Tehran, 2006).

  9. R. Amer, T. Kusky, and A. El Mezayen, “Remote sensing detection of gold related alteration zones in Um Rus area, Central Eastern Desert of Egypt,” Adv. Space Res. 49, 121‒134 (2012).

    Article  Google Scholar 

  10. S. Asadi, S. Niroomand, and F. Moore, “Fluid inclusion and stable isotope geochemistry of the orogenic–type Zinvinjian Cu–Pb–Zn–Au deposit in the Sanandaj–Sirjan metamorphic belt, Northwest Iran,” J. Geochem. Explor. 184, 82‒96 (2018).

    Article  Google Scholar 

  11. A. R. Babakhani, A. Hariri, and F. Farjandi, Geological Map of Saqez (1 : 100 000 Scale) (Geol. Surv. Iran, Tehran, 2003).

  12. A. Baddeley and R. Turner, “Spatstat: An R package for analyzing spatial point patterns,” J. Stat. Software 12, 1‒42 (2005).

    Article  Google Scholar 

  13. T. G. Blenkinsop and D. J. Sanderson, “Are gold deposits in the crust fractals? A study of gold mines in the Zimbabwe craton,” in Fractures, Fluid Flow and Mineralization, Vol. 155 of Geol. Soc. London, Spec. Publ., Ed. by K. McCaffrey, L. Lonegran, and J. Wilkinson (London, 1999), pp. 141‒151.

  14. B. N. Boots and A. Getis, Point Pattern Analysis, Vol. 8 of Sci. Geogr. Ser. (SAGE, 1988).

  15. E. J. M. Carranza and M. Sadeghi, “Post-VMS mineralization deformations (1880–1820 Ma) of the Skellefte district (Sweden): Insights from the spatial pattern of VMS occurrences,” Front. Earth Sci. 8, 319‒324 (2014).

    Article  Google Scholar 

  16. E. J. M. Carranza and M. Sadeghi, “Predictive mapping of prospectivity and quantitative estimation of undiscovered VMS deposits in Skellefte district (Sweden),” Ore Geol. Rev. 38, 219‒241 (2010).

    Article  Google Scholar 

  17. E. J. M. Carranza, Geochemical Anomaly and Mineral Prospectivity Mapping in GIS (Elsevier, New York, 2008).

    Google Scholar 

  18. E. J. M. Carranza, “Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features,” Ore Geol. Rev. 35, 383‒400 (2009).

    Article  Google Scholar 

  19. N. Chrysoulakis, M. Abrams, H. Feidas, and K. Arai, “Comparison of atmospheric correction methods using ASTER data for the area of Crete, Greece,” Int. J. Remote Sens. 31, 6347‒6385 (2010).

    Article  Google Scholar 

  20. S. Corgne, R. Magagi, M. Yergeau, and D. Sylla, “An integrated approach to hydro-geological lineament mapping of a semi-arid region of West Africa using Radarsat-1 and GIS,” Remote Sens. Environ. 114, 1863‒1875 (2010).

    Article  Google Scholar 

  21. M. J. Cracknell and A. M. Reading, “Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information,” Comput. Geosci. 63, 22‒33 (2014).

    Article  Google Scholar 

  22. N. Daneshvar, Doctoral Dissertation (Hamedan, Iran, 2019).

  23. P. Diggle, Statistical Analysis of Spatial Point Pattern, 2nd ed. (Edward Arnold, London, 2003).

    Google Scholar 

  24. J. Eftekhar-Nezhad, The Mahabad Quadrangle Map (Scale 1 : 250 000) (Geol Surv. Iran, 1973).

  25. ESRI, ArcGIS Version 10.3.1 (2010).

  26. A. Ford and T. G. Blenkinsop, “Combining fractal analysis of mineral deposit clustering with weights of evidence to evaluate patterns of mineralization: Application to copper deposits of the Mount Isa Inlier, NW Queensland, Australia,” Ore Geol. Rev. 33, 435‒450 (2008).

    Article  Google Scholar 

  27. H. F. Frimmel, “Earth’s continental crustal gold endowment,” Earth Planet. Sci. Lett. 267, 45‒55 (2008).

    Article  Google Scholar 

  28. N. Fry, “Random point distributions and strain measurement in rocks,” Tectonophysics 60, 89‒105 (1979).

    Article  Google Scholar 

  29. PCI Geomatics, Geomatica User’s Guide, Version 9.1 (Richmond Hill, ON, Canada, 2001).

  30. M. Ghazanfari and Z. Abbasi, Complementary Report of Detailed Exploration of Ghabaghlogeh Gold Deposit: Internal Rep. Geol. Surv.Iran (2009).

    Google Scholar 

  31. M. Ghazanfari, T. Fazlikhani, and Z. Abbasi, Complementary Report of Detailed Exploration of Kervian Gold Deposit: Internal Rep.Geol. Surv.Iran (2009).

    Google Scholar 

  32. R. Goldfarb, T. Baker, B. Dube, D. I. Groves, C. J. Hart, and P. Gosselin, “Distribution, character and genesis of gold deposits in metamorphic terranes,” in Economic Geology: One Hundredth Anniversary Volume, J. W. Hedenquist, J. F. H. Thompson, R. J. Goldfarb, and J. P. Richards (Soc. Econ. Geol., Littleton, Colo., 2005). https://doi.org/10.5382/AV100.14

  33. D. I. Groves, R. J. Goldfarb, F. Robert, and C. J. Hart, “Gold deposits in metamorphic belts: Overview of current understanding, outstanding problems, future research, and exploration significance,” Econ. Geol. 98, 1‒29 (2003).

    Google Scholar 

  34. D. I. Groves, R. J. Goldfarb, M. Gebre-Mariam, S. G. Hagemann, and F. Robert, “Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types,” Ore Geol. Rev. 13, 7‒27 (1998).

    Article  Google Scholar 

  35. P. M. Haddad-Martim, C. R. de Souza, and E. J. M. Carranza, “Spatial analysis of mineral deposit distribution: A review of methods and implications for structural controls on iron oxide-copper-gold mineralization in Carajás, Brazil,” Ore Geol. Rev. 81, 230‒244 (2017).

    Article  Google Scholar 

  36. R. S. Han, J. Chen, F. Wang, X. K. Wang, and Y. Li, “Analysis of metal–element association halos within fault zones for the exploration of concealed ore-bodies—A case study of the Qilinchang Zn–Pb–(Ag–Ge) deposit in the Huize mine district, northeastern Yunnan, China,” J. Geochem. Explor. 159, 62‒78 (2015).

    Article  Google Scholar 

  37. M. Hashim, S. Ahmad, M. A. M. Johari, and A. B. Pour, “Automatic lineament extraction in a heavily vegetated region using Landsat Enhanced Thematic Mapper (ETM+) imagery,” Adv. Space Res. 51, 874‒890 (2013).

    Article  Google Scholar 

  38. S. M. Heidari, MS Thesis (Tehran, 2004).

  39. A. Kocal, MS Thesis (Ankara, 2004).

  40. J. H. Kruhl, “Fractal-geometry techniques in the quantification of complex rock structures: A special view on scaling regimes, inhomogeneity and anisotropy,” J. Struct. Geol. 46, 2‒21 (2013).

    Article  Google Scholar 

  41. N. Li, Doctoral Dissertation (Munich, 2010).

  42. V. Lisitsin, “Spatial data analysis of mineral deposit point patterns: Applications to exploration targeting,” Ore Geol. Rev.71, 861‒881 (2015).

    Article  Google Scholar 

  43. M. Maanijou, N. Daneshvar, D. R. Lentz, C. R. M. McFarlane, and H. Azizi, “U‒Pb rutile dating of the host metagranite and later gold mineralization (Hamzeh–Qharanein) in a ductile shear zone southwest Saqqez Iran,” The 4th World YES Congress, Tehran, Iran,2017, pp. 401‒404.

  44. B. B. Mandelbrot, Les Objects Fractals: Forme, Hasard et Dimension (Flammarion, Paris, 1975).

    Google Scholar 

  45. B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San-Francisco, 1982).

  46. M. Marghany and M. Hashim, “Lineament mapping using multispectral remote sensing satellite data,” Int. J. Phys. Sci. 5, 1501‒1507 (2010).

    Google Scholar 

  47. T. Maurer, “How to pan-sharpen images using the Gram-Schmidt pan-sharpen method – a recipe,” Int. Arch. Photogramm., Remote Sens. Spatial Inf. Sci. XL-1/W1, 239–244 (2013).

    Article  Google Scholar 

  48. B. Mehrabi, S. M. Ghasemi, and E. F. Tale, “Structural control on epithermal mineralization in the Troud-Chah Shirin belt using point pattern and Fry analyses, north of Iran,” Geotectonics 49, 320‒331 (2015).

    Article  Google Scholar 

  49. S. A. Meshkani, B. Mehrabi, A. Yaghubpur, and M. Sadeghi, “Recognition of the regional lineaments of Iran: Using geospatial data and their implications for exploration of metallic ore deposits,” Ore Geol. Rev. 55, 48‒63 (2013).

    Article  Google Scholar 

  50. M. Mohajjel and C. L. Fergusson, “Dextral transpression in Late Cretaceous continental collision, Sanandaj–Sirjan zone, western Iran,” J. Struct. Geol. 22, 1125‒1139 (2000).

    Article  Google Scholar 

  51. A. Najafi, M. Abdi, B. Rahimi, and K. Motevali, “Spatial integration of Fry and fractal analyses in regional exploration: A case study from Bafq-Posht-e-Badam, Iran,” Geol. Colomb. 35, 113 (2010).

    Google Scholar 

  52. C. Ni, S. Zhang, Z. Chen, Y. Yan, and Y. Li, “Mapping the spatial distribution and characteristics of lineaments using fractal and multifractal models: A case study from northeastern Yunnan Province, China,” Sci. Rep. 7, Art. No. 10511 (2017). https://doi.org/10.1038/s41598-017-11027-0

    Article  Google Scholar 

  53. S. Niroomand, R. J. Goldfarb, F. Moore, M. Mohajjel, and E. E. Marsh, “The Kharapeh orogenic gold deposit: geological, structural, and geochemical controls on epizonal ore formation in West Azerbaijan Province, Northwestern Iran,” Miner. Deposita 46, 409‒428 (2011).

    Article  Google Scholar 

  54. C. Nkono, O. Féménias, A. Lesne, J. C. Mercier, and D. Demaiffe, “Fractal analysis of lineaments in Equatorial Africa: Insights on lithospheric structure,” Open J. Geol. 3, 157–168 (2013).

    Article  Google Scholar 

  55. H. Nosratpoor, MS Thesis (Tehran, 2008).

  56. F. Paganelli, E. C. Grunsky, J. P. Richards, and R. Pryde, “Use of RADARSAT-1 principal component imagery for structural mapping: A case study in the Buffalo Head Hills area, northern central Alberta, Canada,” Can. J. Remote Sens. 29, 111‒140 (2003).

    Article  Google Scholar 

  57. F. Pirajno, “Metalliferous sediments and sedimentary rock-hosted stratiform and/or stratabound hydrothermal mineral systems,” in Hydrothermal Processes and Mineral Systems (Springer, Dordrecht, 2009), pp. 727–883.

    Book  Google Scholar 

  58. A. B. Pour and M. Hashim, “Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran,” J. Asian Earth Sci. 42, 1309‒1323 (2011).

    Article  Google Scholar 

  59. A. B. Pour and M. Hashim, “Identifying areas of high economic-potential copper mineralization using ASTER data in the Urumieh–Dokhtar Volcanic Belt, Iran,” Adv. Space Res. 49, 753‒769 (2012).

    Article  Google Scholar 

  60. A. B. Pour and M. Hashim, “Structural geology mapping using PALSAR data in the Bau gold mining district, Sarawak, Malaysia,” Adv. Space Res. 54, 644‒654 (2014).

    Article  Google Scholar 

  61. A. B. Pour and M. Hashim, “Integrating PALSAR and ASTER data for mineral deposits exploration in tropical environments: A case study from Central Belt, Peninsular Malaysia,” Int. J. Image Data Fusion. 6, 170‒188 (2015).

    Article  Google Scholar 

  62. A. B. Pour and M. Hashim, “Structural mapping using PALSAR data in the Central Gold Belt, Peninsular Malaysia,” Ore Geol. Rev. 64, 13‒22 (2015).

    Article  Google Scholar 

  63. A. B. Pour, M. Hashim, C. Makoundi, and K. Zaw, “Structural mapping of the Bentong-Raub Suture Zone using PALSAR remote sensing data, Peninsular Malaysia: Implications for sediment-hosted/orogenic gold mineral systems exploration,” Resour. Geol. 66, 368‒385 (2016).

    Article  Google Scholar 

  64. B. D. Ripley, “Modelling spatial patterns (with discussion),” J. R. Stat. Soc., Ser. B 39, 172‒212 (1977).

    Google Scholar 

  65. N. M. Saadi, M. A. Zaher, F. El-Baz, and K. Watanabe, “Integrated remote sensing data utilization for investigating structural and tectonic history of the Ghadames Basin, Libya,” Int. J. Appl. Earth Obs. 13, 778‒791 (2011).

    Article  Google Scholar 

  66. S. Solomon and W. Ghebreab, “Lineament characterization and their tectonic significance using Landsat TM data and field studies in the central highlands of Eritrea,” J. Afr. Earth Sci. 46, 371‒378 (2006).

    Article  Google Scholar 

  67. J. Stocklin, “Structural history and tectonics of Iran: A review,” Am. Assoc. Petrol. Geol. Bull. 52, 1229‒1258 (1968).

    Google Scholar 

  68. H. A. Tajeddin, Doctoral Dissertation (Tehran, 2011).

  69. J. Vearncombe and S. Vearncombe, “The spatial distribution of mineralization; applications of Fry analysis,” Econ. Geol. 94, 475‒486 (1999).

    Article  Google Scholar 

  70. S. J. Walsh and F. Mynar, “Landsat digital enhancements for lineament detection,” Environ. Geol. Water Sci. 8, 123‒128 (1986).

    Article  Google Scholar 

  71. G. Wang, R. Li, E. J. M. Carranza, S. Zhang, C. Yan, Y. Zhu, and Z. Ma, “3D geological modeling for prediction of subsurface Mo targets in the Luanchuan district, China,” Ore Geol. Rev. 71, 592‒610 (2015).

    Article  Google Scholar 

  72. S. Zerrouk, A. Bendaoud, M. Hamoudi, J. P. Liégeois, H. Boubekri, and R. B. El Khaznadji, “Mapping and discriminating the Pan-African granitoids in the Hoggar (southern Algeria) using Landsat 7 ETM+ data and airborne geophysics,” J. Afr. Earth Sci. 127, 146‒158 (2017).

    Article  Google Scholar 

  73. J. Zhao, S. Chen, and R. Zuo, “Identifying geochemical anomalies associated with Au–Cu mineralization using multifractal and artificial neural network models in the Ningqiang district, Shaanxi, China,” J. Geochem. Explor. 164, 54‒64 (2016).

    Article  Google Scholar 

  74. R. Zuo and J. Wang, “Fractal/multifractal modeling of geochemical data: A review,” J. Geochem. Explor. 164, 33‒41 (2016).

    Article  Google Scholar 

  75. R. Zuo, R. F. P. Agterberg, Q. Cheng, and L. Yao, “Fractal characterization of the spatial distribution of geological point processes,” Int. J. Appl. Earth Obs. 11, 394‒402 (2009).

    Article  Google Scholar 

  76. USGS Earth Explorer. http://earthexplorer.usgs.gov. Accessed July 18, 2016.

  77. F. Aliani, M. Maanijou, Z. Sabouri, and A. A. Sepahi, “Petrology, geochemistry and geotectonic environment of the Alvand Intrusive Complex, Hamedan, Iran,” Chem. Erde 72, 363‒383 (2012).

  78. N. Daneshvar, M. Maanijou, H. Azizi, Y. Asahara, and K. Yamamoto, “Investigation of crystallization and type of Early Paleozoic granitoid bodies in the northern Sanandaj Sirjan zone (SW Saqqez) using the zircon shape and morphology,” Geopersia 8, 245‒259 (2018).

  79. N. Daneshvar, M. Maanijou, H. Azizi, and Y. Asahara, “Petrogenesis and geodynamic implications of an Ediacaran (550 Ma) granite complex (metagranites), southwestern Saqqez, northwest Iran,” J. Geodyn. 132 (2019).https://doi.org/10.1016/j.jog.2019.101669

Download references

ACKNOWLEDGMENTS

The authors thank the US Geological Survey (USGS) for providing OLI Landsat 8 OLI and GDEM data. We gratefully thank Sh. Mehrabani (Bu-Ali Sina University, Hamedan, Iran) for fieldwork. Many thanks are given to Prof. L. Collins (California State University, Northridge, California, USA) for assistance in preparing manuscript. We really appreciate Prof. K.E. Degtyarev (Geological Institute of Russian Academy of Sciences, Moscow, Russia) and an anonymous reviewer for their clear recommendations and helpful comment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Maanijou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maanijou, M., Daneshvar, N., Alipoor, R. et al. Spatial Analysis on Gold Mineralization in Southwest Saqqez Using Point Pattern, Fry and Fractal Analyses. Geotecton. 54, 589–604 (2020). https://doi.org/10.1134/S001685212004007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001685212004007X

Keywords:

Navigation