Skip to main content
Log in

Investigation of the efficiency of gas and water injection into an oil reservoir

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract—

Oil displacement by a miscible fluid in a porous medium, which is related to injection of hydrocarbonic gas into an oil reservoir, is investigated. A compositional model is used to describe flow of multicomponent mixtures through the porous medium. The thermophysical properties of the mixtures are given by the equation of state of the van der Waals type. The reservoir simulation software for compositional modeling of flow through a porous medium is developed within the framework of this model. The efficiencies of oil displacement from the porous medium by methane or water are compared using the above software. It is shown that in the initial stages of injection oil displacement by water is more efficient under a fixed volume flow rate of the injected fluid. However, in the last stages gas injection becomes more efficient for displacement of light hydrocarbon components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Dake, L.P., Fundamentals of Reservoir Engineering, Amsterdam: Elsevier Scientific Publishing Co, 1978.

    Google Scholar 

  2. Orr, F.M., Theory of Gas Injection Processes, Holte, Denmark: Tie-Line Publications, 2007.

    Google Scholar 

  3. Brusilovskii, A.I., Fazovye prevrashcheniya pri razrabotke mestorozhdenii nefti i gaza (Phase Transitions in Oil- and Gas-Field Development), Moscow: Graal, 2002.

  4. Voskov, D.V. and Entov, V.M., Problem of oil displacement by gas mixtures, Fluid Dynamics, 2001, vol. 36, no. 2, pp. 269–278.

    MATH  Google Scholar 

  5. Coats, K.H., An equation of state: compositional model, SPE J., 1980, vol. 20, no. 5, pp. 363–376.

    Google Scholar 

  6. Surguchev, M.L., Vtorichnye and tretichnye metody uvelicheniya nefteotdachi (Secondary and Tertiary Methods of Oil Recovery Enhancement), Moscow: Nedra, 1985.

  7. Magruder, J.B., Stiles, L.H., and Yelverton, T.D., Review of the Means San Andres unit CO2 tertiary project, J. Pet. Technol., 1990, vol. 42, no. 5, pp. 638–644.

    Google Scholar 

  8. Afanasyev, A.A., Hydrodynamic modelling of petroleum reservoirs using simulator MUFITS, Energy Procedia, 2015, vol. 76, pp. 427–435.

    Google Scholar 

  9. Afanasyev, A., Kempka, T., Kühn, M., and Melnik, O., Validation of the MUFITS reservoir simulator against standard CO2 storage benchmarks and history-matched models of the Ketzin pilot site, Energy Procedia, 2016, vol. 97, pp. 395–402.

    Google Scholar 

  10. Redlich, O. and Kwong, J.N.S., On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions, Chemical Reviews, 1949, vol. 44, pp. 233–244.

    Google Scholar 

  11. Lorentz, J., Bray, B.G., and Clar, C.R.J., Calculating viscosity of reservoir fluids from their composition, J. Pet. Technol., 1964, vol. 16, no. 10, pp. 1171–1176.

    Google Scholar 

  12. Michelsen, M.L., The isothermal flash problem. Part I. Stability, Fluid Phase Equilib., 1982, vol. 9, no. 1, pp. 1–19.

    Google Scholar 

  13. Michelsen, M.L., The isothermal flash problem. Part II. Phase-split calculation, Fluid Phase Equilib., 1982, vol. 9, no. 1, pp. 21–40.

    Google Scholar 

  14. Sage, R.H., Hicks, B.L., and Lacey, W.N., Phase equilibria in hydrocarbon systems, Ind. Eng. Chem., 1940, vol. 32, no. 8, pp. 1085–1092.

    Google Scholar 

  15. Reamer, H.H., Olds, R.H., Sage, B.H., and Lacey, W.N., Phase equilibria in hydrocarbon systems, Ind. Eng. Chem., 1942, vol. 34, no. 12, pp. 1526–1531.

    Google Scholar 

  16. Reamer, H.H., Fiskin, J.M., and Sage, B.H., Phase equilibria in hydrocarbon systems, Ind. Eng. Chem., 1949, vol. 41, no. 12, pp. 2871–2875.

    Google Scholar 

  17. Kulikovskii, A.G. and Sveshnikova, E.I., Nonlinear Waves in Elastic Media, New York, London, Tokyo: CRC Press, Boca Raton, 1995; Moscow: Mosk. Litsei, 1998.

  18. Afanasyev, A.A., On the Riemann problem for supercritical CO2 injection into an aquifer, Int. J. Greenhouse Gas Contr. 2015, vol. 42, pp. 629–643.

    Google Scholar 

  19. Buckley, S.E. and Leverett, M.C., Mechanism of fluid displacement in sands, Trans. AIME, 1942, vol. 146, pp. 107–116.

    Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, project no. 19-71-10051.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Afanasyev or E. A. Vedeneeva.

Additional information

Translated by E.A.Pushkar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanasyev, A.A., Vedeneeva, E.A. Investigation of the efficiency of gas and water injection into an oil reservoir. Fluid Dyn 55, 621–630 (2020). https://doi.org/10.1134/S0015462820050018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462820050018

Keywords:

Navigation