Skip to main content
Log in

Rehabilitation of Soil Properties by Using Direct Seeding Technology

  • DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The application of direct seeding technology on typical and ordinary chernozems in the European territory for four years has resulted in a significant increase in the content of soil organic matter in regions with sufficient moisture supply and some tendency of its in regions with insufficient moisture supply (Stavropol region). A tendency for an increase in the available phosphorus and exchangeable potassium contents has also been observed. The yield of crops and profitability of production in the course of long-term (> 7 yr) application of direct seeding are approximately 30% higher than in the case of traditional technologies. Application rates of glyphosate-containing herbicides to control weeds can be significantly reduced in the case of using cover crops, modern biochemical methods, and strict compliance with the technology of herbicide application. Taken together, these measures ensure an increase in the number and species diversity of microorganisms that can suppress pathogenic microflora significantly reducing the damage to plants from diseases and pests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. A. Antonov, A. N. Esaulko, M. S. Sigida, and E. V. Golosnoi, “Assessment of water erosion processes in agrolandscapes of the Stavropol region and their impact on productivity,” Vestn. APK Stavropol’ya, No. 1 (29), 67–72 (2018).

    Google Scholar 

  2. A. O. Berestetskii, “Prospective development of biological and biorational herbicides,” Vestn. Zashch. Rast., No. 1 (91), 5–12 (2017).

  3. E. V. Bogatyreva, “Effect of biopreparations on decomposition of straw residues of winter wheat and productivity of ordinary chernozem in the zone of unstable moistening,” Zemledelie, No. 8, 34–36 (2015).

    Google Scholar 

  4. N. G. Vlasenko, N. A. Korotkikh, and I. G. Bokina, Phytosanitary Situation in No-Till Crops (Siberian Research Institute of Agriculture, Novosibirsk, 2013) [in Russian].

    Google Scholar 

  5. N. G. Vlasenko, N. A. Korotkikh, O. V. Kulagin, and A. A. Slobodchikov, “Phytosanitary state of winter wheat crops after using no-till technology,” Zashch. Karantin Rast., No. 1, 18–22 (2014).

  6. I. M. Gabbasova, R. R. Suleimanov, I. K. Khabirov, et al., “Assessment of the state of agrochernozems in the Transural steppe under application of no-till management system,” Russ. Agric. Sci. 41, 34–39 (2015).

    Article  Google Scholar 

  7. L. P. Galeeva and P. S. Shirokikh, “Properties of leached chernozems in Novosibirsk Ob region after different tillage methods,” Dostizh. Nauki Tekh. APK 32 (11), 9–13 (2018).

    Google Scholar 

  8. A. Ya. Glushko, “Degradation of land resources of Stavropol region under intensive farming conditions,” Zemledelie, No. 8, 5–7 (2011).

    Google Scholar 

  9. A. M. Grebennikov, V.A. Isaev, S. A. Yudin, Yu. I. Cheverdin, V. M. Garmashov, N. A. Nuzhnaya, and I. M. Kornilov, “Effect of tillage methods of migration-mycellary chernozems on crop yield,” Vestn. Ross. S-kh. Nauki, No. 2, 38–41 (2019).

    Google Scholar 

  10. S. V. Didovich and O. P. Alekseenko, “Effective inhibition of weeds during bacterial treatment with phototrophic and heterotrophic microorganisms,” in Proceedings of the IV International Scientific Conference “Modern State, Problems, and Prospective Development of Agrarian Science,” Yalta, September 9–13,2019 (Areal, Simferopol, 2019), pp. 257–259.

  11. V. K. Dridiger, “Effect of plant remains on soil loss tolerance,” in Proceedings of the All-Russia Scientific-Practical Conference Dedicated to the 50th Anniversary of Erosion-Control Measures in Novonikulinskoe Farm, Timiryazevskii Settlement “Soil Erosion: Problems and Efficiency Improvement of Plant Industry in Adaptive-Landscape Agricultural System,” July 13–14,2018 (Ulyanovsk State Technical University, Ulyanovsk, 2018), pp. 59–64.

  12. V. K. Dridiger, V. V. Kulintsev, R. S. Stukalov, and R. G. Gadzhiumarov, “The influence of crop cultivation technology on the water-physical properties of ordinary chernozem during the first crop rotation in the zone of unstable moistening of the Stavropol region,” Izv. Orenb. Gos. Agrar. Univ., No. 4 (66), 39–43 (2017).

  13. V. K. Dridiger, A. F. Nevecherya, I. D. Tokarev, and S. S. Vaitsekhovskaya, “Economic efficiency of no-till technology in arid zone of the Stavropol region,” Zemledelie, No. 3, 16–19 (2017).

    Google Scholar 

  14. V. K. Dridiger, R. S. Stukalov, and R. G. Gadzhiumarov, “Role of plant remains in no-till agricultural technology,” in Proceedings of the International Scientific-Practical Conference Dedicated to the Year of Ecology and 50th Anniversary of the Program to Combat Soil Erosion “Urgent Problems of Farming and Soil Erosion Control,” September 13–15,2017 (All-Russia Research Institute of Farming and Soil Erosion Control, Kursk, 2017), pp. 39–49.

  15. A. N. Esaulko, S. A. Korostylev, M. S. Sigida, and E. V. Golosnoi, “Dynamics of soil fertility during no-till cultivation of crops in the Stavropol region,” Agrokhim. Vestn., No. 4, 58–62 (2018).

  16. A. D. Zhelezova, N. A. Manucharova, and M. V. Gorlenko, “Structural and functional characteristics of the prokaryotic community of soddy-podzolic soil influenced by the herbicide glyphosate,” Moscow Univ. Soil Sci. Bull. 73, 89–94 (2018).

    Article  Google Scholar 

  17. Phytosanitary Situation in Crops Cultivated Using No-Till Technology, Ed. by N. G. Vlasenko, N. A. Vlasenko, and I. G. Bokina (Siberian Research Institute of Agriculture, Novosibirsk, 2013) [in Russian].

    Google Scholar 

  18. B. M. Kogut, Z. S. Artemyeva, N. P. Kirillova, M. A. Yashin, and E. I. Soshnikova, “Organic matter of the air-dry and water-stable macroaggregates (2–1 mm) of haplic chernozem in contrasting variants of land use,” Eurasian Soil Sci. 52, 141–149 (2019).

    Article  Google Scholar 

  19. N. A. Korotkikh and N. G. Vlasenko, “Dynamics of soil seed bank of weeds depending on crop cultivation technology,” Russ. Agric. Sci. 40, 191–194 (2014).

    Article  Google Scholar 

  20. V. V. Kotlyarov, Yu. P. Fedulov, and D. V. Kotlyarov, Use of Physiologically Active Substances in Agrotechnologies (Kuban State Agrarian University, Krasnodar, 2016) [in Russian].

    Google Scholar 

  21. D. V. Kotlyarov, V. V. Kotlyarov, D. Yu. Donchenko, and E. S. Bagryantsev, RF Patent No. 2584434, Byull. Izobret., No. 35 (2014).

  22. V. V. Kulintsev, E. I. Godunova, L. I. Zhelnakova, et al., New-Generation Agricultural System in the Stavropol Region (Agrus, Stavropol, 2013) [in Russian].

    Google Scholar 

  23. N. A. Morozov, A. I. Khripunov, V. V. Kulintsev, E. I. Godunova, and S. A. Likhodievskaya, “Moisture supply for winter wheat after bare fallow and bastard fallow under arid conditions,” Russ. Agric. Sci. 43, 104–107 (2017).

    Article  Google Scholar 

  24. Land Agricultural System of Stavropol Krai: Monograph, Ed. by A. A. Zhuchenko and V. I. Trukhacheva (Agrus, Stavropol, 2011) [in Russian].

    Google Scholar 

  25. M. S. Sokolov, A. P. Glinushkin, Yu. Ya. Spiridonov, E. Yu. Toropova, and O. D. Filipchuk, “Technology of soil protective resource-saving farming (within the concept of UN Food and Agriculture Organization),” Agrokhimiya, No. 5, 3–20 (2019).

    Google Scholar 

  26. R. S. Stukalov and V. K. Dridiger, “Effect of no-till technology on pollution and accumulation of glyphosate acid in soil and winter wheat grain,” Nov. Nauki APK, No. 1 (10), 74–78 (2018). https://doi.org/10.25930/2218-855x-1-10-121128

    Article  Google Scholar 

  27. E. Yu. Toropova, S. N. Posazhennikov, and E. Yu. Marmuleva, “System phytosanitary role of precursors in southern forest-steppe of Novosibirsk oblast,” Sib. Vestn. S-kh. Nauki, No. 4, 4–11 (2014).

    Google Scholar 

  28. V. A. Kholodov, N. V. Yaroslavtseva, V. I. Lazarev, and A. S. Frid, “Interpretation of data on the aggregate composition of typical chernozems under different land use by cluster and principal component analyses,” Eurasian Soil Sci. 49, 1026–1032 (2016).

    Article  Google Scholar 

  29. V. A. Kholodov, N. V. Yaroslavtseva, Yu. R. Fakhodov, V. P. Belobrov, S. A. Yudin, A. Ya. Aydiev, V. I. Lazarev, and A. S. Frid, “Changes in the ratio of aggregate fractions in humus horizons of chernozems in response to the type of their use,” Eurasian Soil Sci. 52, 162–170 (2019).

    Article  Google Scholar 

  30. G. A. Shekhovtsev and N. N. Chaikina, “Monitoring of soil fertility, use of mineral and organic fertilizers, and balance of nutritional elements in soils of the eastern part of the Stavropol region,” Zemledelie, No. 6, 21–26 (2018).

    Google Scholar 

  31. A. S. F. Araujo, R. T. R. Monteiro, and R. B. Abarkeli, “Effect of glyphosate on the microbial activity of two Brazilian soils,” Chemosphere 52 (5), 799–804 (2003).

    Article  Google Scholar 

  32. V. P. Belobrov, S. A. Yudin, N. R. Ermolaev, V. K. Dridiger, R. S. Stukalov, N. V. Kholodov, V. A. Yaroslavtseva, and A. Yu. Aidiev, “Influence of direct seeding technology on the structure of typical chernozem,” IOP Conf. Ser.: Earth Environ. Sci. 350, 012027 (2019).

  33. T. H. Dao, “Crop residues and management of annual grass weed sin continuous no-till wheat (Triticum aestivum),” Weed Sci. 35, 395–400 (1987).

    Article  Google Scholar 

  34. V. K. Dridiger, E. I. Godunova, F. V. Eroshenko, R. S. Stukalov, and R. G. Gadzhiumarov, “Effect of no-till technology on erosion resistance, the population of earthworm sand humus content in soil,” Res. J. Pharm., Biol. Chem. Sci. 9 (2), 766–770 (2018).

    Google Scholar 

  35. R. F. Follett and D. S. Schimel, “Effect of tillage practices on microbial biomass dynamics,” Soil Sci. Soc. Am. J. 53, 1091–1096 (1989).

    Article  Google Scholar 

  36. B. Govaerts, M. Mezzalama, K. D. Sayre, J. Crossa, J. M. Nicol, and J. Decktrs, “Long-term consequences of tillage, residue management, and crop rotation on maize/wheat root and nematode populations in subtropical highlands,” Appl. Soil Ecol. 32, 305–315 (2006).

    Article  Google Scholar 

  37. J. Hershenhorn, F. Casella, and M. Vurro, “Weed biocontrol with fungi: past, present and future,” Biocontrol Sci. Technol. 26 (10), 1313–1328 (2016).

    Article  Google Scholar 

  38. M. Lane, N. Lorenz, J. Saxena, C. Ramsier, and R. P. Dick, “Microbial activity, community structure and potassium dynamics in the rhizosphere soil of soybean plants treated with glyphosate,” Pedobiologia 55, 153–159 (2012).

    Article  Google Scholar 

  39. D. B. Nguyen, M. T. Rose, T. J. Rose, S. G. Morris, and L. van Zwieten, “Impact of glyphosate on soil microbial biomass and respiration: a meta-analysis,” Soil Biol. Biochem. 92, 50–57 (2016). https://doi.org/10.1016/jsoilbio2015.09.014

    Article  Google Scholar 

  40. C. E. Pankhurst, R. C. Magarey, G. R. Stirling, B. L. Blair, M. J. Bell, and A. L. Garside, “Management practice so improve soil health and reduce the effects of detrimental soil biota associated with yield decline of sugarcane in Queensland, Australia,” Soil Tillage Res. 72, 125–137 (2003).

    Article  Google Scholar 

  41. A. Sherstha, S. Z. Knezevic, R. C. Roy, B. R. Ball-Coelho, and C. J. Swanton, “Effect of tillage, cover crop and crop rotation on the composition of weed flora in a sandy soil,” Weed Res. 42, 76–87 (2002).

    Article  Google Scholar 

  42. C. J. Swanton, B. D. Booth, K. Chandler, D. R. Clements, and A. Shrestha, “Management in a modified no-tillage corn-soybean-wheat rotation influences weed population and community dynamics,” Weed Sci. 54, 47–58 (2006).

    Article  Google Scholar 

  43. J. R. Teasdale, C. E. Beste, and W. E. Potts, “Response of weeds tillage and cover crop residue,” Weed Sci. 39, 195–199 (1991).

    Article  Google Scholar 

  44. M. A. Weaver, C. D. Boyette, and R. E. Hoagland, “Management of kudzu by the bioherbicide, Myrothecium verrucaria, herbicides and integrated control programs,” Biocontrol Sci. Technol. 26 (1), 136–140 (2016).

    Article  Google Scholar 

  45. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2015).

    Google Scholar 

  46. G. W. Yeates and K. Huges, “Effect of three tillages regimes on plant and soil nematodes in an oats/maize rotation,” Pedobiologia 34, 379–387 (1990).

    Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 19-16-00053 and performed using the equipment of the Collective Use Center “Functions and Properties of Soils and Soil Cover” at the Dokuchaev Soil Science Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Dridiger.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by D. Konyushkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dridiger, V.K., Ivanov, A.L., Belobrov, V.P. et al. Rehabilitation of Soil Properties by Using Direct Seeding Technology. Eurasian Soil Sc. 53, 1293–1301 (2020). https://doi.org/10.1134/S1064229320090033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229320090033

Keywords:

Navigation