Skip to main content
Log in

Soils and the Soil Cover of Mountainous Tundra Landscapes on Calcareous Rocks in the Polar Urals: Diversity, Taxonomy, and Nitrogen and Carbon Patterns

  • GENESIS AND GEOGRAPHY OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Landscapes of the northern part of the Bolshoi Paipudynskii Ridge (the Polar Urals) served as a key site to study the taxonomic diversity of soils on calcareous rocks as related to both bioclimatic and geogenic (relief, thickness of eluvial and colluvial derivatives of calcareous rocks) factors. Soils of the postlithogenic trunk of the new Russian soil classification system are developed under different plant communities. They are classified within several soil orders: cryometamorphic soils (Mollic Calcaric Stagnosols), lithozems (Folic Mollic Calcaric Leptosols), organo-accumulative soils (Molic Leptic Calcaric Stagnosols), and gley soils (Folic Calcaric Gleysols). These soils compose either small individual areas, or occur in soil associations. The mass of carbon and nitrogen in the aboveground phytomass ranges within 40–49 and 0.9–2.3%, respectively. The storage of aboveground phytomass (fresh weight) varies from 20 to 1600 g/m2. In each soil profile, the surface horizons have a maximum content of organic carbon and nitrogen (up to 40 and 2.5%, respectively). The Corg and Norg patterns in soils depend on the productivity of plant communities, the composition of falloff, and the conditions for its decomposition. In all soil profiles, the inorganic carbon content (Cinorg) increases down the soil profile reaching 12%. The mineral nitrogen content does not exceed 1%. The contents of N-\({\text{NH}}_{4}^{ + }\) and N-\({\text{NO}}_{3}^{ - }\) have their maximums reaching 140 and 30 mg/kg, respectively, in the surface soil horizons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. I. I. Alekseev, E. V. Abakumov, and V. M. Tomashunas, “Catenary differentiation of soils at the foothills of the Polar Urals in the area of the Khalyatalbei River (the Shchuch’ya River tributary),” Samar. Luka: Probl. Reg. Global’noi Ekol. 24 (4), 146–149 (2015).

    Google Scholar 

  2. N. V. Alekseeva-Popova, “Ecology and biogeochemical differentiation of species” in Problems of Ecology of Plant Communities, Ed. by V. T. Yarmishko (VVM, St. Petersburg, 2005), pp. 342–351.

    Google Scholar 

  3. T. V. Ananko, M. I. Gerasimova, and D. E. Konyushkov, “Soils of mountain territories in classification of Russian soils,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 92, 122–146 (2018). https://doi.org/10.19047/0136-1694-2018-92-122-146

    Article  Google Scholar 

  4. B. A. Yurtsev, Anthropogenic Dynamics of Vegetation Cover in the Arctic and Subarctic: Principles and Study Methods, Tr. Bot. Inst. im. V.L. Komarova, Ross. Akad. Nauk, vol. 15 (St. Petersburg, 1995).

  5. I. O. Buzunova V. N. Gladkova, T. I. Zaikonnikova, V. V. Petrovskii, O. V. Rebristaya, N. N. Taraskina, V. N. Tikhomirov, and B. A. Yurtsev, Arctic Flora of the USSR, Iss. 9: Families Drosaceae–Leguminosae, Part 1: Families Drosaceae–Rosaceae, Ed. by B. A. Yurtsev (Nauka, Leningrad, 1984) [in Russian].

    Google Scholar 

  6. Atlas of Soils of the Komi Republic, G. V. Dobrovol’skii, A. I. Taskaev, and I. V. Zaboeva (Syktyvkar, 2010) [in Russian].

  7. K. P. Bogatyrev and N. A. Nogina, “Soils of the Ural Mountains,” in Soils of the Urals and Western and Central Siberia (Academy of Sciences of USSR, Moscow, 1962), pp. 5–48.

    Google Scholar 

  8. I. S. Buzin, M. I. Makarov, T. I. Malysheva, M. S. Kadulin, N. E. Koroleva, and M. N. Maslov, “Transformation of nitrogen compounds in soils of mountain tundra ecosystems in the Khibiny,” Eurasian Soil Sci. 52, 518–525 (2019).

    Article  Google Scholar 

  9. Geobotanical Zonation of the Nonchernozemic Zone of European Part of the RSFSR (Nauka, Leningrad, 1989) [in Russian].

  10. M. I. Gerasimova, “Russian soil classification system: towards the next approximation, Eurasian Soil Sci. 52, 25–33 (2019).

    Article  Google Scholar 

  11. S. V. Goryachkin, Soil Cover of the North: Structure, Genesis, Ecology, and Evolution (GEOS, Moscow, 2010) [in Russian].

  12. S. V. Goryachkin, Yu. N. Vodyanitskii, D. E. Konyushkov, S. N. Lesovaya, et al., “Bioclimatogenic and geogenic problems in soil geography of Northern Eurasia,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 62, 48–68 (2008).

    Google Scholar 

  13. S. V. Goryachkin and A. O. Makeev, “Trends of taiga pedogenesis: diversity of mesomorphic soils of European North,” in Pedogenesis and Weathering in Humid and Semihumid Landscapes (Institute of Geography, Russian Academy of Sciences, Moscow, 1991), pp. 8–72.

    Google Scholar 

  14. The State Soil Map of Russia, Scale 1 : 1 000 000. Explanatory Note to Sheet Q-41: Vorkuta (Syktyvkar, 2011) [in Russian].

  15. L. K. Grunina and M. V. Getsen, “Biogenic accumulation of nitrogen by plants in the tundra zone,” Nauchn. Dokl. Komi Fil., Akad. Nauk SSSR, No. 97, (1984).

  16. A. A. Dymov and E. V. Zhangurov, “Morphological-genetic characterization of soils on the Enganepe Ridge,” Eurasian Soil Sci. 44, 471–479 (2011).

    Article  Google Scholar 

  17. V. V. Elsakov, “Accumulation of nitrogen and carbon by aboveground phytomass in communities of the Bol’shezemel’skaya tundra,” Nauchn. Dokl. Komi Fil., Akad. Nauk SSSR, No. 461, (2003).

  18. E. V. Zhangurov, Yu. A. Dubrovskii, and A. N. Sandula, “Pedogenesis on calcareous rocks s and floristic features of water protective forests in the middle reaches of the Ilych River (Northern Urals),” in Proceedings of the All-Russia Conference “Modern Status and Prospective Development of Strictly Protected Territories in the European North and Urals” (Syktyvkar, 2011), pp. 62–66.

  19. E. V. Zhangurov, V. V. Startsev, Ya. A. Dubrovskiy, S. V. Degteva, and A. A. Dumov, “Morphogenetic features of soils under mountainous larch forests and woodlands in the Subpolar Urals,” Eurasian Soil Sci. 52, 1463–1476 (2019). https://doi.org/10.1134/S1064229319120147

    Article  Google Scholar 

  20. E. V. Zhangurov, V. D. Tonkonogov, and I. V. Zaboeva, “Automorphic soils of the central and southern Timan Ridge,” Eurasian Soil Sci. 41, 1247–1255 (2008).

    Article  Google Scholar 

  21. K. Sh. Kazeev, M. A. Kutrovskii, E. V. Dadenko, L. S. Vezdeneeva, S. I. Kolesnikov, and V. F. Val’kov, “The influence of carbonates in parent rocks on the biological properties of mountain soils of the Northwest Caucasus region,” Eurasian Soil Sci. 45, 282–289 (2012).

    Article  Google Scholar 

  22. M. N. Kataeva, “Availability of elements in tundra soils on acidic and ultramafic rocks in the Polar Urals,” Eurasian Soil Sci. 46, 158–167 (2013).

    Article  Google Scholar 

  23. M. N. Kataeva and S. S. Kholod, “Differentiation of vegetation and soils of the Polar Urals in contrasting geochemical conditions,” in Ecology of the Plant Communities (St. Petersburg, 2005), pp. 352–391.

  24. D. E. Konyushkov, M. I. Gerasimova, and T. V. Ananko, “Correlation of soddy calcareous soils on the soil map of the Russian Federation (1 : 2.5 M scale, 1988) and in the Russian soil classification system,” Eurasian Soil Sci. 52, 244–257 (2019). https://doi.org/10.1134/S1064229319030074

  25. V. Ya. Kostyaev, Fixation of Molecular Nitrogen in Arctic Tundra (Filigran’, Yaroslavl, 2016) [in Russian].

    Google Scholar 

  26. I. I. Lebedeva and M. I. Gerasimova, “Diagnostic horizons in the Russian soil classification system,” Eurasian Soil Sci. 45, 823–833 (2012).

    Article  Google Scholar 

  27. S. N. Lesovaya, S. V. Goryachkin, and Yu. S. Polekhovskii, “Soil formation and weathering on ultramafic rocks in the mountainous tundra of the Rai-Iz massif, Polar Urals,” Eurasian Soil Sci. 45, 33–44 (2012).

    Article  Google Scholar 

  28. M. N. Maslov, Candidate’s Dissertation in Biology (Moscow, 2015).

  29. M. N. Maslov, E. I. Kopeina, A. G. Zudkin, N. E. Koroleva, A. A. Shulakov, V. G. Onipchenko, and M. I. Makarov, “Stocks of phytomass and organic carbon in tundra ecosystems of northern Fennoscandia,” Moscow Univ. Soil Sci. Bull. 71, 113–119 (2016).

    Article  Google Scholar 

  30. M. N. Maslov and M. I. Makarov, “Transformation of nitrogen compounds in the tundra soils of Northern Fennoscandia,” Eurasian Soil Sci. 49, 757–764 (2016).

    Article  Google Scholar 

  31. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2015; Moscow State Univ., Moscow, 2017).

  32. E. V. Moshkina, Candidate’s Dissertation in Agriculture (St. Petersburg, 2009).

  33. National Soil Atlas of the Russian Federation (Astrel’, Moscow, 2011) [in Russian].

  34. D. S. Orlov, Humic Acids and the General Theory of Humification (Moscow State University, Moscow, 1990) [in Russian].

    Google Scholar 

  35. Field Guide for Identification of Russian Soils (Dokuchaev Soil Science Inst., Moscow, 2008) [in Russian].

  36. L. E. Rodin and N. I. Bazilevich, Dynamics of Organic Matter and Biological Cycle of Ash Elements and Nitrogen in General Types of the Global Vegetation (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  37. G. G. Romanov, T. A. Ovsova, and L. K. Grunina, “Nitrogen fixation and accumulation by Dryas octopetala (Rosaceae) in the Subarctic,” Bot. Zh. 76 (11), 1578–1681 (1991).

    Google Scholar 

  38. V. O. Targul’yan, Pedogenesis and Weathering in Cold Humid Regions (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  39. V. D. Tonkonogov, “Spatial genetic sequences of soil horizons and soil profiles on the Russian and West Siberian plains,” Eurasian Soil Sci. 41, 565–573 (2008).

    Article  Google Scholar 

  40. V. P. Firsova and V. S. Dedkov, Soils of High Altitudes in the Urals (Sverdlovsk, 1983) [in Russian].

    Google Scholar 

  41. L. F. Shadrin and L. Ya. Ostrovskii, “Mapping of Ordovian deposits in the Polar Urals,” in Geology and Metallogeny of Ordovian Massifs of the Axial Zone of the North of Polar Urals (Tyumen, 1978) [in Russian].

  42. E. V. Shamrikova, S. V. Deneva, and O. S. Kubik, “Spatial patterns of carbon and nitrogen in soils of the Barents Sea coastal area (Khaypudyrskaya Bay),” Eurasian Soil Sci. 52, 507–517 (2019).

    Article  Google Scholar 

  43. E. V. Shamrikova, S. V. Deneva, O. S. Kubik, and A. N. Panyukov, “Nitrogen compounds in the soil of the continental margings of the European Russian Arctic,” Eurasian Soil Sci. 53 (7), 870–881 (2020).

    Article  Google Scholar 

  44. E. V. Shamrikova, E. S. Zhangurov, O. S. Kubik, and M. A. Korolev, “Specificity of the composition and properties of organic matter in soils of the Polar Urals,” Vestn. Tomsk. Gos. Univ., ser. Biol. (2020).

  45. Yu. O. Shvareva, “Climate of the Cis-Polar and Polar Urals,” in Study of Glaciers and Glacial Regions (Academy of Sciences of USSR, Moscow, 1962), No. 2, pp. 176–199.

  46. V. M. Shvetsova, “Dependence of photosynthesis of some plants in the Arctic on temperatures,” Bot. Zh. 55 (11), 1683–1688 (1970).

    Google Scholar 

  47. N. G. Fedorets and O. N. Bakhmet, Ecological Features of Transformation of Carbon and Nitrogen Compounds in Forest Soils (Karelian Scientific Center, Russian Academy of Sciences, Petrozavodsk, 2003) [in Russian].

    Google Scholar 

  48. B. A. Yurtsev, N. V. Alekseeva-popova, I. V. Drozdova, and M. N. Kataeva, “Characteristics of vegetation and soils of Polar Ural in contrast geochemical conditions: calciphytic and acidophytic communities,” Bot. Zh. 89 (1), 27–41 (2004).

    Google Scholar 

  49. M. F. M. Bjorbækmo, T. Carlsen, A. Brysting, et al., “High diversity of root-associated fungi in both alpine and arctic Dryas octopetala,” BMC Plant Biol. 10, 1–12 (2010). https://doi.org/10.1186/1471-2229-10-244

    Article  Google Scholar 

  50. T. A. Carlsen, PhD Thesis (University of Oslo, Oslo, 2002).

  51. K. E. Clemmensen and A. Michelsen, “Integrated long-term responses of an arctic-alpine willow and associated ectomycorrhizal fungi to an altered environment,” Can. J. Bot. 84 (5), 831–843 (2006).

    Article  Google Scholar 

  52. M. Gardes and A. Dahlberg, “Mycorrhizal diversity in arctic and alpine tundra: an open question,” New Phytol. 133 (1), 147–157 (1996).

    Article  Google Scholar 

  53. J. E. Hobbie and E. A. Hobbie, “N-15 in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra,” Ecology 87 (4), 816–822 (2006).

    Article  Google Scholar 

  54. U. Kõljalg, A. Dahlberg, A. F. S. Taylor, E. Larsson, N. Hallenberg, J. Stenlid, K. H. Larsson, P. M. Fransson, O. Karen, and L. Jonsson, “Diversity and abundance of resupinate thelephoroid fungi as ectomycorrhizal symbionts in Swedish boreal forests,” Mol. Ecol. 9 (12), 1985–1996 (2000).

    Article  Google Scholar 

  55. S. N. Lessovaia, Y. Polekhovsky, S. Dultz, M. Plötze, N. Andreeva, A. Filimonov, and O. Momotova, “Soil development on basic and ultrabasic rocks in cold environments of Russia traced by mineralogical composition and pore space characteristics,” Catena 137, 596–604 (2016).

    Article  Google Scholar 

  56. J. Moon, L. Ma, K. Xia, and W. M. A. Plant, “Microbial and mineral contributions to amino acid and protein organic matter accumulation during 4000 years of pedogenesis,” Soil Biol. Biochem. 100, 42–50 (2016). https://doi.org/10.1016/j.soilbio.2016.05.011

    Article  Google Scholar 

  57. O. Muhlmann, M. Bacher, and U. Peintner, “Polygonum viviparum mycobionts on an alpine primary successional glacier forefront,” Mycorrhiza 18 (2), 87–95 (2008).

    Article  Google Scholar 

  58. A. Munsell, Munsell Soil Color Chart (Colmorgan Instruments, Baltimore, MD, 1988.

    Google Scholar 

  59. P. Nannipieri and P. Eldor, “The chemical and functional characterization of soil N and its biotic components,” Soil Biol. Biochem. 41, 2357–2369 (2009).

    Article  Google Scholar 

  60. K. K. Newsham, R. Upson, and D. J. Read, “Mycorrhiza and dark septate root endophytes in polar regions,” Fungal Ecol. 2, 10–20 (2009).

    Article  Google Scholar 

  61. C. H. Robinson, “Cold adaptation in Arctic and Antarctic fungi,” New Phytol. 151 (2), 341–353 (2001).

    Article  Google Scholar 

  62. A. L. Ruotsalainen, J. Tuomi, and H. Vare, “A model for optimal mycorrhizal colonization along altitudinal gradients,” Silva Fen. 36 (3), 681–694 (2002).

    Google Scholar 

  63. M. Ryberg, E. Larsson, and U. Molau, “Ectomycorrhizal diversity on Dryas octopetala and Salix reticulate in an Alpine cliff ecosystem,” Arct. Antarct. Alp. Res. 41 (4), 506–514 (2009).

    Article  Google Scholar 

  64. S. E. Smith and D. J. Read, Mycorrhizal Symbiosis (Academic, New York, 2008).

    Google Scholar 

  65. L. Tedersoo and K. Nara, “General latitudinal gradient of biodiversity is reversed in ectomycorrhizal fungi,” New Phytol. 185 (2), 351–354 (2010.

    Article  Google Scholar 

  66. P. Wang, J. Ruijven, M. M. P. D. Heijmans, F. Berendse, A. Maksimov, T. Maximov, and L. Mommer, “Short-term root and leaf decomposition of two dominant plant species in a Siberian tundra,” Pedobiologia 65, 68–76 (2017).https://doi.org/10.1016/j.pedobi.2017.08.002

    Article  Google Scholar 

  67. H. Väre, M. Vestberg, and S. Eurola, “Mycorrhiza and root-associated fungi in Spitsbergen,” Mycorrhiza 1 (3), 93–104 (1992).

    Article  Google Scholar 

  68. E. G. Zibzeev and Ch. N. Sambyla, “Phytomass structure of plant communities of humid high-altitude habitats of the Eastern Sayan Ranges: a case study of the Kryzhin Range,” Contemp. Probl. Ecol. 4, 296–302 (2011).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are deeply grateful to N.B. Khitrov, S.V. Goryachkin, D.A. Kaverin, and T.A. Sizonenko for valuable advice, critical remarks, and consultations in the preparation of the manuscript.

Funding

This study was performed within the framework of budgetary theme “General Regularities of the Formation and Functioning of Peat Soils in the Arctic and Subarctic sectors of the European Northeast of Russia” (state registration number: АААА-А17-117122290011-5) and partly supported by the Russian Foundation for Basic Research, project no, 20-04-00445а “Factors and Mechanisms of Stabilization of Organic Matter in Soils of Extreme Conditions (by the Example of Arctic Ecosystems).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Shamrikova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by D. Konyushkov

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamrikova, E.V., Zhangurov, E.V., Kulyugina, E.E. et al. Soils and the Soil Cover of Mountainous Tundra Landscapes on Calcareous Rocks in the Polar Urals: Diversity, Taxonomy, and Nitrogen and Carbon Patterns. Eurasian Soil Sc. 53, 1206–1221 (2020). https://doi.org/10.1134/S106422932009015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422932009015X

Keywords:

Navigation