Skip to main content
Log in

Optical-Electrical Properties and Thickness Analysis of TiO2 Thin Films Obtained by Magnetron Sputtering

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The study of thin films with properties that meet specific needs and improve people’s quality of life has been the focus of many researchers. However, knowing and controlling the production techniques of these films have been a challenge for the industry of optical-electronic devices, functional coatings, and energy conservation. The thickness of thin films is a parameter that influences the optical and electrical characteristics of these materials, thus being one of the most important information in the plasma deposition process. Because of the need for precision in measuring the thickness of thin transparent films, this work proposes to evaluate the Swanepoel methods (envelope) and the PUMA, computational method, from optical transmittance curves and compare them with the measurements directly made by microscopy. Scanning electronics for thin films of TiO2 deposited by magnetron sputtering in different conditions. The results of this study showed that the PUMA method is capable of calculating film thicknesses of a few hundred nanometers and with few interference fringes. The PUMA method showed convergence with high precision for films produced with 30 and 60 min of treatment and a difference of 17% for films with 120 min of deposition concerning the measurements made by microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Sahu, S. Choudhary, S.A. Khan, A. Pandey, S. Mohapatra, . Nano-Struct. & Nano-Obj. 17, 92 (2019). https://doi.org/10.1016/j.nanoso.2018.12.005

    Article  Google Scholar 

  2. H. Mahdhi, S. Alaya, J.L. Gauffier, K. Djessas, Z. Ben Ayadi, . Journal of Alloys and Compounds. 695, 697 (2017). https://doi.org/10.1016/j.jallcom.2016.11.117

    Article  Google Scholar 

  3. Y. Jin, B. Song, C. Lin, P. Zhang, S. Dai, T. Xu, Q. Nie, . Optics Express. 25, 73 (2017). https://doi.org/10.1364/OE.25.031273

    Article  Google Scholar 

  4. Y. Jin, B. Song, Z. Jia, Y. Zhang, C. Lin, X. Wang, S. Dai, . Opt. Express. 25 (1), 440 (2017). https://doi.org/10.1364/OE.25.000440. Publisher: Optical Society of America

    Article  ADS  Google Scholar 

  5. Y. Fang, D. Furniss, D. Jayasuriya, H. Parnell, Z. Tang, A.B. Seddon, T.M. Benson, . Opt. Express. 27(16), 22275 (2019). https://doi.org/10.1364/OE.27.022275

    Article  ADS  Google Scholar 

  6. J.A.B. Pérez, M. Courel, M. Pal, F.P. Delgado, N.R. Mathews, . Ceram. Int. 43 (17), 15777 (2017). https://doi.org/10.1016/j.ceramint.2017.08.141

    Article  Google Scholar 

  7. D. Li, X. Song, J. Xu, Z. Wang, R. Zhang, P. Zhou, H. Zhang, R. Huang, S. Wang, Y. Zheng, D.W. Zhang, L. Chen, . Appl. Surf. Sci. 421, 884 (2017). https://doi.org/10.1016/j.apsusc.2016.09.069

    Article  ADS  Google Scholar 

  8. L. Xu, G. Zheng, S. Pei, J. Wang, . Optik. 158, 382 (2018). https://doi.org/10.1016/j.ijleo.2017.12.138

    Article  ADS  Google Scholar 

  9. A. Mukanova, A. Jetybayeva, S.T. Myung, S.S. Kim, Z. Bakenov, . Mater. Today Energy. 9, 49 (2018). https://doi.org/10.1016/j.mtener.2018.05.004

    Article  Google Scholar 

  10. J. Deng, Y. Su, D. Liu, P. Yang, B. Liu, C. Liu, . Chem. Rev. 119, 9221 (2019). https://doi.org/10.1021/acs.chemrev.9b00232

    Article  Google Scholar 

  11. M. Rasheed, R. Barillé, . J. Non-Cryst. Solids. 476, 1 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.04.027

    Article  ADS  Google Scholar 

  12. S. Dolai, R. Dey, S. Das, S. Hussain, R. Bhar, A.K. Pal, . J. Alloys Compd. 724, 456 (2017). https://doi.org/10.1016/j.jallcom.2017.07.061

    Article  Google Scholar 

  13. G. Georgescu, A. Petris, . Opt. Express. 27, 34803 (2019). https://doi.org/10.1364/OE.27.034803

    Article  ADS  Google Scholar 

  14. A. Lehmuskero, M. Kuittinen, P. Vahimaa, . Opt. Express. 15, 10744 (2007). https://doi.org/10.1364/OE.15.010744

    Article  ADS  Google Scholar 

  15. Y. Fang, D. Furniss, D. Jayasuriya, H. Parnell, R. Crane, Z.Q. Tang, E. Barney, C.L. Canedy, C.S. Kim, M. Kim, C.D. Merritt, W.W. Bewley, I. Vurgaftman, J.R. Meyer, A.B. Seddon, T.M. Benson, . Opt. Mater. Express. 9, 2022 (2019). https://doi.org/10.1364/OME.9.002022

    Article  ADS  Google Scholar 

  16. P. Nestler, C.A. Helm, . Opt. Express. 25, 27077 (2017). https://doi.org/10.1364/OE.25.027077

    Article  ADS  Google Scholar 

  17. M. Śmietana, M. Janik, M. Koba, W.J. Bock, . Opt. Express. 25, 26118 (2017). https://doi.org/10.1364/OE.25.026118

    Article  ADS  Google Scholar 

  18. R. Swanepoel, . J. Phys. E Sci. Instrum. 16, 1214 (1983). https://doi.org/10.1088/0022-3735/16/12/023

    Article  ADS  Google Scholar 

  19. D.A. Minkov, G.M. Gavrilov, J.M.D. Moreno, C.G. Vazquez, E. Marquez, . Meas. Sci. Technol. 28, 035202 (2017). https://doi.org/10.1088/1361-6501/aa54f6

    Article  ADS  Google Scholar 

  20. Y. Fang, D. Jayasuriya, D. Furniss, Z.Q. Tang, Sojka, C. Markos, S. Sujecki, A.B. Seddon, T.M. Benson, . Opt. Quant. Electron. 49, 237 (2017). https://doi.org/10.1007/s11082-017-1057-9

    Article  Google Scholar 

  21. A.R.G. Korpi, S. Rezaee, C. Luna, A. Ţalu, A. Arman, A. Ahmadpourian, . Results Phys. 7, 3349 (2017). https://doi.org/10.1016/j.rinp.2017.08.018

    Article  ADS  Google Scholar 

  22. L.I. Nykyruy, R.S. Yavorskyi, Z.R. Zapukhlyak, G. Wisz, P. Potera, . Opt. Mater. 92, 319 (2019). https://doi.org/10.1016/j.optmat.2019.04.029

    Article  ADS  Google Scholar 

  23. R. Prachachet, P. Buranasiri, M. Horprathum, P. Eiamchai, S. Limwichean, V. patthanasettakul, N. Nuntawong, P. Chindaudom, B. Samransuksamer, T. Lertvanithphol, . Mater. Today Proc. 4, 6365 (2017). https://doi.org/10.1016/j.matpr.2017.06.140

    Article  Google Scholar 

  24. D.A. Minkov, G.M. Gavrilov, G.V. Angelov, J.M.D. Moreno, C.G. Vazquez, S.M.F. Ruano, E. Marquez, . Thin Sol. Films. 645, 370 (2018). https://doi.org/10.1016/j.tsf.2017.11.003

    Article  ADS  Google Scholar 

  25. F. Medjaldi, A. Bouabellou, Y. Bouachiba, A. Taabouche, K. Bouatia, H. Serrar, . Mater. Res. Express. 7, 016439 (2020). https://doi.org/10.1088/2053-1591/ab6c0c

    Article  ADS  Google Scholar 

  26. E.G. Birgin, I. Chambouleyron, J.M. Martínez, . J. Comput. Phys. 151, 862 (1999). https://doi.org/10.1006/jcph.1999.6224

    Article  ADS  Google Scholar 

  27. M.M.A.G. Jafar, M.H. Saleh, M.J.A. Ahmad, B.N. Bulos, T.M. Al-Daraghmeh, . J. Mater. Sci. Mater. El. 4, 3281 (2016). https://doi.org/10.1007/s10854-015-4156-z

    Article  Google Scholar 

  28. A. Tejada, L. Montañez, C. Torres, P. Llontop, L. Flores, F.D. Zela, A. Winnacker, J.A. Guerra, . Appl. Opt. 58, 9585 (2019). https://doi.org/10.1364/AO.58.009585

    Article  ADS  Google Scholar 

  29. Y. Wei, P. Nukala, M. Salverda, S. Matzen, H.J. Zhao, J. Momand, A.S. Everhardt, G. Agnus, G.R. Blake, P. Lecoeur, B.J. Kooi, J. Íñiguez, B. Dkhil, B. Noheda, . Nat. Mater. 17, 1095 (2018). https://doi.org/10.1038/s41563-018-0196-0

    Article  ADS  Google Scholar 

  30. S. Dutta, K. Sankaran, K. Moors, G. Pourtois, S. Van Elshocht, J. Bommels, W. Vandervorst, Z. Tokei, C. Adelmann, . J. Appl. Phys. 122, 025107 (2017). https://doi.org/10.1063/1.4992089

    Article  ADS  Google Scholar 

  31. D.I. Yakubovsky, A.V. Arsenin, Y.V. Stebunov, D.Y. Fedyanin, V.S. Volkov, . Opt. Express. 25, 25574 (2017). https://doi.org/10.1364/OE.25.025574

    Article  ADS  Google Scholar 

  32. A.D. Pogrebnjak, Ivashchenko, P.L. Skrynskyy, O.V. Bondar, P. Konarski, K. Zaleski, S. Jurga, E. Coy, . Compos. Part B Eng. 142, 85 (2018). https://doi.org/10.1016/j.compositesb.2018.01.004

    Article  Google Scholar 

  33. M. Aslam Manthrammel, A.M. Aboraia, M. Shkir, I.S. Yahia, M.A. Assiri, H.Y. Zahran, V. Ganesh, S. AlFaify, A.V. Soldatov, ., Vol. 112. https://doi.org/10.1016/j.optlastec.2018.11.024 (2019)

  34. F. Liu, Y. Lai, J. Liu, B. Wang, S. Kuang, Z. Zhang, J. Li, Y. Liu, . J. Alloys Compd. 493, 305 (2010). https://doi.org/10.1016/j.jallcom.2009.12.088

    Article  Google Scholar 

  35. A. Bagheri Khatibani, Z.A. Hallaj, S.M. Rozati, . Eur. Phys. J. Plus. 130, 254 (2015). https://doi.org/10.1140/epjp/i2015-15254-6

    Article  Google Scholar 

  36. E.G. Birgin, I. Chambouleyron, J.M. Martinez, . J. Comput. Phys. 151(2), 862 (1999)

    Article  ADS  Google Scholar 

  37. S.U. of Campinas, Estimation of parameters of thin films using transmittance. http://www.ime.usp.br/egbirgin/puma/ (2009)

  38. I. Niskanen, T. Suopajarvi, H. Liimatainen, T. Fabritius, R. Heikkila, G. Thungstrom, . J. Quant. Spectrosc. Radiat. Transfer. 235, 1 (2019). https://doi.org/10.1016/j.jqsrt.2019.06.023

    Article  ADS  Google Scholar 

  39. C.S. Park, V.R. Shrestha, S.S. Lee, E.S. Kim, D.Y. Choi, . Scientific reports. 5, 8467 (2015). https://doi.org/10.1038/srep08467

    Article  Google Scholar 

  40. C. Jiang, J. Zhu, J. Han, P. Lei, X. Yin, . Surf. Coat. Technol. 229, 222 (2013). https://doi.org/10.1016/j.surfcoat.2012.03.075

    Article  Google Scholar 

  41. D. Herman, J. Sícha, J. Musil, . Vacuum. 81(3), 285 (2006). https://doi.org/10.1016/j.vacuum.2006.04.004

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Libório.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobrinho, V.S.S., Neto, J.Q.M., Lima, L.L.F. et al. Optical-Electrical Properties and Thickness Analysis of TiO2 Thin Films Obtained by Magnetron Sputtering. Braz J Phys 50, 771–779 (2020). https://doi.org/10.1007/s13538-020-00794-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00794-3

Keywords

Navigation