Skip to main content

Advertisement

Log in

Complete genome sequence of the biocontrol agent Serratia marcescens strain N4–5 uncovers an assembly artefact

  • Bacterial Fungal and Virus Molecular Biology - Short Communication
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Serratia marcescens are gram-negative bacteria found in several environmental niches, including the plant rhizosphere and patients in hospitals. Here, we present the genome of Serratia marcescens strain N4–5 (=NRRL B-65519), which has a size of 5,074,473 bp (664-fold coverage) and contains 4840 protein coding genes, 21 RNA genes, and an average G + C content of 59.7%. N4–5 harbours a plasmid of 11,089 bp and 43.5% G + C content that encodes six unique CDS repeated 2.5× times totalling 13 CDS. Our genome assembly and manual curation uncovered the insertion of two extra copies of the 5S rRNA gene in the assembled sequence, which was confirmed by PCR and Sanger sequencing to be a misassembly. This artefact was subsequently removed from the final assembly. The occurrence of extra copies of the 5S rRNA gene was also observed in most complete genomes of Serratia spp. deposited in public databases in our comparative analysis. These elements, which also occur naturally, can easily be confused with true genetic variation. Efforts to discover and correct assembly artefacts should be made in order to generate genome sequences that represent the biological truth underlying the studied organism. We present the genome of N4–5 and discuss genes potentially involved in biological control activity against plant pathogens and also the possible mechanisms responsible for the artefact we observed in our initial assembly. This report raises awareness about the extra copies of the 5S rRNA gene in sequenced bacterial genomes as they may represent misassemblies and therefore should be verified experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361. https://doi.org/10.1007/s11104-008-9568-6

    Article  CAS  Google Scholar 

  2. Chauhan MS, Yadav JPS, Gangopadhyay S (2008) Chemical control of soilborne fungal pathogen complex of seedling cotton. Trop Pest Man 34:159–161. https://doi.org/10.1080/09670878809371233

    Article  Google Scholar 

  3. Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M, Morales MB, Ceryngier P, Liira J, Tscharntke T, Winqvist C, Eggers S, Bommarco R, Part T, Bretagnolle V, Plantegenest M, Clement LW, Dennis C, Palmer C, Onate JJ, Guerrero I, Hawro V, Aavik T, Thies C, Flohre A, Hanke S, Fischer C, Goedhart PW, Inchausti P (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11:97–105. https://doi.org/10.1016/j.baae.2009.12.001

    Article  CAS  Google Scholar 

  4. Someya N, Kataoka N, Komagata T, Hirayae K, Hibi T (2005) Potential of Serratia marcescens strain B2 for biological control of rice sheath blight. Biocontrol Sci Tech 15:105–109. https://doi.org/10.1080/09583150400016092

    Article  Google Scholar 

  5. Wang K, Yan PS, Cao LX (2014) Chitinase from a novel strain of Serratia marcescens JPP1 for biocontrol of aflatoxin: molecular characterization and production optimization using response surface methodology. Biomed Res Int 482623. https://doi.org/10.1155/2014/482623

  6. Afzal I, Iqrar I, Shinwari ZK, Yasmin A (2017) Plant growth-promoting potential of endophytic bacteria isolated from roots of wild Dodonaea viscosa L. Plant Growth Regul 81:339–408. https://doi.org/10.1007/s10725-016-0216-5

    Article  CAS  Google Scholar 

  7. Vicente CS, Nascimento FX, Ikuyo Y, Cock PJ, Mota M, Hasegawa K (2016) The genome and genetics of a high oxidative stress tolerant Serratia sp. LCN16 isolated from the plant parasitic nematode Bursaphelenchus xylophilus. BMC Genomics 17:301. https://doi.org/10.1186/s12864-016-2626-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bonnin RA, Girlich D, Imanci D, Dortet L, Naas T (2015) Draft genome sequence of the Serratia rubidaea CIP 103234T reference strain, a human-opportunistic pathogen. Genome Announc 3:e01340–e01315. https://doi.org/10.1128/genomeA.01340-15

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lavania M, Nautiyal CS (2013) Solubilization of tricalcium phosphate by temperature and salt tolerant Serratia marcescens NBRI1213 isolated from alkaline soils. Afr J Microbiol Res 7:4403–4413. https://doi.org/10.5897/AJMR2013.5773

    Article  CAS  Google Scholar 

  10. Kampfer P, Glaeser SP (2016) Serratia aquatilis sp. nov., isolated from drinking water systems. Int J Syst Evol Microbiol 66:407–413. https://doi.org/10.1099/ijsem.0.000731

    Article  CAS  PubMed  Google Scholar 

  11. Bencini MA, Yzermana EPF, Bruina JP, Den Boer JW (2008) Airborne dispersion of Serratia marcescens as a model for spread of Legionella from a whirlpool. R Inst Public Health 122:962–964. https://doi.org/10.1016/j.puhe.2007.12.010

    Article  CAS  Google Scholar 

  12. Kobayashi DY, El-Barrad N (1996) Selection of bacterial antagonists using enrichment cultures for the control of summer patch disease in Kentucky bluegrass. Curr Microbiol 32:106–111. https://doi.org/10.1007/s002849900019

    Article  CAS  Google Scholar 

  13. Roberts DP, Lakshman DK, McKenna LF, Emche SE, Maul JE, Bauchan G (2016) Seed treatment with ethanol extract of Serratia marcescens is compatible with Trichoderma isolates for control of damping-off of cucumber caused by Pythium ultimum. Plant Dis 100:1278–1287. https://doi.org/10.1094/PDIS-09-15-1039-RE

    Article  CAS  PubMed  Google Scholar 

  14. Roberts DP, McKenna LF, Buyer JS (2017) Consistency of control of damping-off of cucumber is improved by combining ethanol extract of Serratia marcescens with other biologically based technologies. Crop Prot 96:59–67. https://doi.org/10.1016/j.cropro.2017.01.007

    Article  Google Scholar 

  15. Roberts DP, McKenna LF, Lakshman DK, Meyer SLF, Kong H, De Souza JT, Lydon J, Baker CJ, Chung S (2007) Suppression of damping-off of cucumber caused by Pythium ultimum with live cells and extracts of Serratia marcescens. Soil Biol Biochem 39:2275–2288. https://doi.org/10.1016/j.soilbio.2007.03.029

    Article  CAS  Google Scholar 

  16. Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Accessed October 2018

  17. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, Gillespie JJ, Gough R, Hix D, Kenyon R, Machi D, Mao C, Nordberg EK, Olson R, Overbeek R, Pusch GD, Shukla M, Schulman J, Stevens RL, Sullivan DE, Vonstein V, Warren A, Will R, Wilson MJ, Yoo HS, Zhang C, Zhang Y, Sobral BW (2014) PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res 42:D581–D591. https://doi.org/10.1093/nar/gkt1099

    Article  CAS  PubMed  Google Scholar 

  18. Galardini M, Biondi EG, Bazzicalupo M, Mengoni A (2011) CONTIGuator: a bacterial genomes finishing tool for structural insights on draft genomes. Source Code Biol Med 6:11. https://doi.org/10.1186/1751-0473-6-11

    Article  PubMed  PubMed Central  Google Scholar 

  19. Piro VC, Faoro H, Weiss VA, Steffens MB, Pedrosa FO, Souza EM, Raittz RT (2014) FGAP: an automated gap closing tool. BMC Res Notes 7:371. https://doi.org/10.1186/1756-0500-7-371

    Article  PubMed  PubMed Central  Google Scholar 

  20. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1999) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  Google Scholar 

  21. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA, Stevens R, Vonstein V, Wattam AR, Xia F (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365. https://doi.org/10.1038/srep08365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream M, Barrell B (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945. https://doi.org/10.1093/bioinformatics/16.10.944

    Article  CAS  PubMed  Google Scholar 

  23. The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169. https://doi.org/10.1093/nar/gkw1099

    Article  CAS  Google Scholar 

  24. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, Jensen LJ, von Mering C, Bork P (2016) eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 44(D1):D286–D293. https://doi.org/10.1093/nar/gkv1248

    Article  CAS  PubMed  Google Scholar 

  25. Grant JR, Arantes AS, Stothard P (2012) Comparing thousands of circular genomes using the CGView comparison tool. BMC Genomics 13:202–1582. https://doi.org/10.1093/bib/bbx081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Auch AF, Klenk HP, Göker M (2010) Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2:142–148. https://doi.org/10.4056/sigs.541628

    Article  PubMed  PubMed Central  Google Scholar 

  27. Richter M, Rosselló-Móra R, Glöckner FO, Peplies J (2015) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32(6):929–931. https://doi.org/10.1093/bioinformatics/btv681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rodriguez RLM, Konstantinidis KT (2014) Bypassing cultivation to identify bacterial species. Microbe 9:111–118. https://doi.org/10.1128/microbe.9.111.1

    Article  Google Scholar 

  29. Cerdeño AM, Bibb MJ, Challis GL (2001) Analysis of the prodiginine biosynthesis gene cluster of Streptomyces coelicolor A3(2): new mechanisms for chain initiation and termination in modular multienzymes. Chem Biol 119:1–13. https://doi.org/10.1016/S1074-5521(01)00054-0

    Article  Google Scholar 

  30. Harris AKP, Williamson NR, Slater H, Cox A, Abbasi S, Foulds I, Simonsen HT, Leeper FJ, Salmond GPC (2004) The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation. Microbiology 150:3547–3560. https://doi.org/10.1099/mic.0.27222-0

    Article  CAS  PubMed  Google Scholar 

  31. Scavino AF, Pedraza RO (2013) The role of siderophores in plant growth-promoting bacteria. In: Maheshwari D, Saraf M, Aeron A (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37241-4

    Chapter  Google Scholar 

  32. Ridl J, Suman J, Fraraccio S, Hradilova M, Strejcek M, Cajthaml T, Zubrova A, Macek T, Strnad H, Uhlik O (2018) Complete genome sequence of Pseudomonas alcaliphila JAB1 (=DSM 26533), a versatile degrader of organic pollutants. Stand Genomic Sci 13:3. https://doi.org/10.1186/s40793-017-0306-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thies S, Santiago-Schubel B, Kovacic F, Rosenau F, Hausmann R, Jaeger KE (2014) Heterologous production of the lipopeptide biosurfactant serrawettin W1 in Escherichia coli. J Biotechnol 181:27–30. https://doi.org/10.1016/j.jbiotec.2014.03.037

    Article  CAS  PubMed  Google Scholar 

  34. Hillis DM, Moritz C, Porter CA, Baker RJ (1991) Evidence for biased gene conversion in concerted evolution of ribosomal DNA. Science 251:308–310. https://doi.org/10.1126/science.1987647

    Article  CAS  PubMed  Google Scholar 

  35. Lee ZM-P, Bussema C, Schmidt TM (2008) rrnDB: documenting the number of rRNA and tRNA genes in bacteria and archaea. Nucleic Acids Res 37:D489–D493. https://doi.org/10.1093/nar/gkn689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Muggli MD, Puglisi SJ, Ronen R, Boucher C (2015) Misassembly detection using paired-end sequence reads and optical mapping data. Bioinformatics 31:i80–i88. https://doi.org/10.1093/bioinformatics/btv262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

LCF and JTS acknowledge the financial support from CNPq, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Teodoro de Souza.

Additional information

Responsible Editor: Rodrigo Galhardo.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Data deposition: Trimmed sequence data and assembly are deposited in GenBank (accession numbers: NZ_CP031316.1 and NZ_CP031315.1).

Electronic supplementary material

ESM 1

(PDF 1124 kb)

ESM 2

(DOCX 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, L.C., Maul, J.E., Viana, M.V.C. et al. Complete genome sequence of the biocontrol agent Serratia marcescens strain N4–5 uncovers an assembly artefact. Braz J Microbiol 52, 245–250 (2021). https://doi.org/10.1007/s42770-020-00382-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00382-2

Keywords

Navigation