Skip to main content
Log in

History of Early Bacteriophage Research and Emergence of Key Concepts in Virology

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The viruses of bacteria – bacteriophages – were discovered 20 years after the discovery of viruses. However, this was mainly the bacteriophage research that, after the first 40 years, yielded the modern concept of the virus and to large extent formed the grounds of the emerging molecular genetics and molecular biology. Many specific aspects of the bacteriophage research history have been addressed in the existing publications. The integral outline of the events that led to the formation of the key concepts of modern virology is presented in this review. This includes the opposition of F. d’Herelle and J. Bordet viewpoints over the nature of the bacteriophage, the history of lysogeny discovery and of determination of the mechanisms of underlying this phenomenon, the work of the Phage group led by M. Delbruck in USA, the development of the genetic analysis of bacteriophages and other research that eventually led to emergence of the concept of the virus (bacteriophage) as a transmissive genetic program. The review also covers a brief history of early applications of the bacteriophages such as phage therapy and phage typing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stent, G. S. (1960) Papers on Bacterial Viruses, Boston, Mass., pp. 365, doi: https://doi.org/10.1126/science.134.3471.44-c .

  2. Letarov, A. V. (2019) Modern Concepts of Bacteriophage Biology, DeLi, Moscow.

  3. Schlegel, H. G. (2020) Geschichte der Mikrobiologie, Halle: Deutsche Akademie der Naturforscher Leopoldina, 2004.

  4. Debré, P. (1998) Louis Pasteur, John Hopkins University Press, Baltimore.

  5. Lakhtakia, R. (2014) The legacy of Robert Koch: surmise, search, substantiate, Sultan Qaboos Univ. Med. J., 14, e37-e41, doi: https://doi.org/10.12816/0003334 .

    Article  PubMed  PubMed Central  Google Scholar 

  6. Blevins, S. M., and Bronze, M. S. (2010) Robert Koch and the “golden age” of bacteriology, Int. J. Infect. Dis., 14, e744-e751, doi: https://doi.org/10.1016/j.ijid.2009.12.003 .

    Article  PubMed  Google Scholar 

  7. Winau, F., and Winau, R. J. M. (2002) Emil von Behring and serum therapy, Microbes Infect., 4, 185-188, doi: https://doi.org/10.1016/s1286-4579(01)01526-x .

    Article  PubMed  Google Scholar 

  8. Kitsenko, O. S., Kitsenko, R. N., and Belova, L. I. (2015) Problems of medial supply of the Red Army during Great Patriotic War (accounts of Stalingrad medical doctors), Vest. Volgograd. Gosudar. Med. Univer., 53, 86-88.

    Google Scholar 

  9. Silva, M. (2018) From Bombay to Rio de Janeiro: the circulation of knowledge and the establishment of the Manguinhos laboratory, 1894-1902, Hist. Cienc. Saude Manguinhos, 25, 639-657, doi: https://doi.org/10.1590/S0104-59702018000400003 .

    Article  PubMed  Google Scholar 

  10. URL: http://www.samoupravlenie.ru/37-10.php.

  11. Van Kammen, A. (1999) Beijerinck’s contribution to the virus concept – an introduction, Arch. Virol. Suppl., 15, 1-8, doi: https://doi.org/10.1007/978-3-7091-6425-9_1 .

    Article  CAS  PubMed  Google Scholar 

  12. Summers, W. C. (1991) From culture as organism to organism as cell: historical origins of bacterial genetics, J. Hist. Biol., 24, 171-190, doi: https://doi.org/10.1007/BF00209428 .

    Article  CAS  PubMed  Google Scholar 

  13. Ivanovski, D. (1892) Über die mosaikkrankheit der tabakspflanze, Bulletin scientifique publié par l’Académie impériale des sciences de Saint-Pétersbourg, 35, 67-70.

    Google Scholar 

  14. Loeffler, F., and Frosch, P. (1898) Report of the commission for research on foot-and-mouth disease, Zent. Bakt. Parasitkde. Abt. I, 23, 371-391.

    Google Scholar 

  15. Ivanovski, D. I. (1892) Tobacco mosaic disease, Trudy Varshavskogo Universiteta, 6, 49-72.

    Google Scholar 

  16. Zhirnov, O. P., and Georgiev, G. P. (2017) D. I. Ivanovsky – a pioneer discover of viruses, as a new form of biological life, Ann. Russ. Acad. Med. Sci., 72, 84-86.

    Article  Google Scholar 

  17. Los, M., Czyz, A., Sell, E., Wegrzyn, A., Neubauer, P., and Wegrzyn, G. (2004) Bacteriophage contamination: is there a simple method to reduce its deleterious effects in laboratory cultures and biotechnological factories? J. Appl. Genet., 45, 111-120.

    PubMed  Google Scholar 

  18. Abedon, S. T., Thomas-Abedon, C., Thomas, A., and Mazure, H. (2011) Bacteriophage prehistory: is or is not Hankin, 1896, a phage reference? Bacteriophage, 1, 174-178, doi: https://doi.org/10.4161/bact.1.3.16591 .

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hankin, E. H. (1896) The bactericidal action of the waters of the Jamuna and Ganges rivers on Cholera microbes, Ann. Inst. Pasteur, 10, 511-523.

    Google Scholar 

  20. Gamaleya, N. F. (1898), Bacteriolysins – enzymes distroying bacteria, Russ. Arkhiv Patologii, pp. 607-613.

  21. Bardell, D. (1982) An 1898 report by Gamaleya for a lytic agent specific for Bacillus anthracis, J. Hist. Med. Allied Sci., 37, 222-225, doi: https://doi.org/10.1093/jhmas/xxxvii.2.222 .

    Article  CAS  PubMed  Google Scholar 

  22. Thomas, G. H. (2014) Frederick William Twort: Not just Bacteriophage, in Microbiology Society.

  23. Twort, F. W. (1915) An investigation on the nature of ultra-microscopic viruses, Lancet, 186, 1241-1243.

    Article  Google Scholar 

  24. Kunin, E. V. (2017) Logics of a Chance. On Nature and Development of Biological Evolution, ZAO Tsentropoligraf, Moscow.

  25. Twort, F. W. (1936) Further investigations on the nature of ultra-microscopic viruses and their cultivation, J. Hyg. (Lond), 36, 204-235, doi: https://doi.org/10.1017/s0022172400043606 .

    Article  CAS  Google Scholar 

  26. Dublanchet, A. (2017) Autobiographie de Félix d’Hérelle. Les pérégrinations d’un bactériologiste, Lavoisier, Paris.

  27. Summers, W. C. (2016) Felix Hubert d’Herelle (1873-1949): history of a scientific mind, Bacteriophage, 6, e1270090, doi: https://doi.org/10.1080/21597081.2016.1270090 .

    Article  PubMed  Google Scholar 

  28. D’Hérelle, F. (2007) On an invisible microbe antagonistic toward dysenteric bacilli: brief note by Mr. F. D’Herelle, presented by Mr. Roux. 1917, Res. Microbiol., 158, 553, doi: https://doi.org/10.1016/j.resmic.2007.07.005 .

    Article  PubMed  Google Scholar 

  29. D’Hérelle, F. (1921) Le bactériophage; son rôle dans l’immunité, Masson et cie, Paris.

  30. D’Hérelle, F. (1926) Bacteriophage and Its Significance for Imuunity, Gosudarstvennoye Izdatelstvo, Moscow-Leningrad.

  31. D’Hérelle, F. (1931) An address on bacteriophagy and recovery from infectious diseases, Can. Med. Assoc. J., 24, 619-628.

    PubMed  PubMed Central  Google Scholar 

  32. Schmalstieg, F. C., Jr., and Goldman, A. S. (2009) Jules Bordet (1870-1961): a bridge between early and modern immunology, J. Med. Biogr., 17, 217-224, doi: https://doi.org/10.1258/jmb.2009.009061 .

    Article  PubMed  Google Scholar 

  33. D’Hérelle, F., and Smith, G. H. (1926) The Bacteriophage and Its Behavior, The Williams & Wilkins Company, p. 629.

  34. Billiau, A. (2016) At the centennial of the bacteriophage: reviving the overlooked contribution of a forgotten pioneer, Richard Bruynoghe (1881-1957), J. Hist. Biol., 49, 559-580, doi: https://doi.org/10.1007/s10739-015-9429-0 .

    Article  PubMed  Google Scholar 

  35. Gratia, A. (1921) Studies on the d’Herelle phenomenon, J. Exp. Med., 34, 115-126, doi: https://doi.org/10.1084/jem.34.1.115 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bordet, J., and Ciuca, M. (1921) Remarques sur l’historique des recherches concernant la lyse microbienne transmissible, Compt. Rend. Soc. Biol., 84, 745-747.

    Google Scholar 

  37. McKinley, E. B. (1925) Sérum antilytique obtenu par immunisation contre une bactérie normale, Compt. Rend. Soc. Biol., 93, 1050-1052.

    Google Scholar 

  38. Northrop, J. H., and Krueger, A. P. (1932) The role of intracellular bacteriophage in lysis of susceptible staphylococci, J. Gen. Physiol., 15, 329-332, doi: https://doi.org/10.1085/jgp.15.3.329 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Northrop, J. H. (1937) Chemical nature and mode of formation of pepsin, trypsin and bacteriophage, Science, 86, 479-483, doi: https://doi.org/10.1126/science.86.2239.479 .

    Article  CAS  PubMed  Google Scholar 

  40. Bordet, J. B. V. (1931) Croonian Lecture. – The theories of the bacteriophage, Proc. R. Soc. Ser. B, 107, 398-417, doi: https://doi.org/10.1098/rspb.1931.0005 .

    Article  CAS  Google Scholar 

  41. Appelmans, R. (1921) Le dosage du bactériophage, Compt. Rend. Soc. Biol., 85, 701.

    Google Scholar 

  42. Gratia, J.-P. (2000) Andre Gratia: a forerunner in microbial and viral genetics, Genetics, 156, 471-476.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gratia, A. (1922) The Twort–d’Herelle phenomenon: II. Lysis and microbic variation, J. Exp. Med., 35, 287-302, doi: https://doi.org/10.1084/jem.35.3.287 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Summers, W. C. (1991) On the origins of the science in Arrowsmith: Paul de Kruif, Felix d’Herelle, and phage, J. Hist. Med. Allied Sci., 46, 315-332, doi: https://doi.org/10.1093/jhmas/46.3.315 .

    Article  CAS  PubMed  Google Scholar 

  45. Gratia, A. (1936) Des relations numeriques entre bacteries lysogènes et particules de bactériophage, Ann. Inst. Pasteur, 57, 652-676.

    Google Scholar 

  46. Muller, H. J. (1922) Variation due to change in the individual gene, Am. Naturalist, 56, 32-50.

    Article  Google Scholar 

  47. Summers, W. C. (1993) How bacteriophage came to be used by the Phage Group, J. Hist. Biol., 26, 255-267, doi: https://doi.org/10.1007/Bf01061969 .

    Article  CAS  PubMed  Google Scholar 

  48. Schlesinger, M. (1934) Zur frage der chemischen zusammensetzung des bakteriophagen, Biochem. Z., 273, 306.

    CAS  Google Scholar 

  49. Grafe, A. (1991) A History of Experimental Virology, Springer-Verlag, Berlin, New York.

  50. Ruska, H. (1940) Die Sichtbarmachung der bakteriophagen lyse im Übermikroskop, Naturwissenschaften, 28, 45-46.

    Article  CAS  Google Scholar 

  51. Kruger, D. H., Schneck, P., and Gelderblom, H. R. (2000) Helmut Ruska and the visualisation of viruses, Lancet, 355, 1713-1717, doi: https://doi.org/10.1016/s0140-6736(00)02250-9 .

    Article  CAS  PubMed  Google Scholar 

  52. Kirchhelle, C. (2019) The forgotten typers: the rise and fall of Weimar bacteriophage-typing (1921-1935), Notes Records, doi: https://doi.org/10.1098/rsnr.2019.0020 .

  53. Lwoff, A. (1953) Lysogeny, Bacteriol. Rev., 17, 269-337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Otto, R., and Munter, H. (1921) Zum d’Herelleschen Phänomen, Dtsch. Med. Wchnschrft, 47, 1579.

    Article  CAS  Google Scholar 

  55. Otto, R., and Munter, H. (1923) Weitere untersuchungen zum d’Herelleschen Phänomen, 100, 402-415.

  56. Bail, O. (1922) Elementarbakteriophagen des Shigabacillus, Wien. Klin. Wochenschr., 35, 722-724.

    Google Scholar 

  57. Gildmeister, E., and Herzberg, K. (1924) Zur theorie der bakteriophagen (d’Herelle Lysine). 6. Mitteilung über das d’Herellesche phanomen, Zentr Bakteriol Parasitenk I Abt. Orig., 93, 402-420.

    Google Scholar 

  58. Bail, O. (1925) Der Kolistamm 88 von Gildemeister und Herzberg, Med. Klein., 21, 1271-1273.

    Google Scholar 

  59. Bordet, J. (1925) Le problème de lautolyse microbienne transmissible ou du bactériophage, Annales de l’Institut Pasteur, 1-47.

  60. Bordet, J., and Renaux, E. (1928) L’autolyse bacterienne transmissible ou le bacteriophage, Ann. Inst. Pasteur, 42, 1283.

    Google Scholar 

  61. Burnet, F. M., and McKie, M. (1929) Observations on a permanently lysogenic strain of B. enteritidis gaertner, Australian J. Exp. Biol. Med. Sci., 6, 277-284.

    Article  Google Scholar 

  62. Sankaran, N. (2010) The bacteriophage, its role in immunology: how Macfarlane Burnet’s phage research shaped his scientific style, Stud. Hist. Philos. Biol. Biomed. Sci., 41, 367-375, doi: https://doi.org/10.1016/j.shpsc.2010.10.012 .

    Article  PubMed  Google Scholar 

  63. Burnet, F. M. (1934) The bacteriophages, Biol. Rev., 9, 332-350.

    Article  Google Scholar 

  64. Dooren de Jong, E. D. (1931) Studien über Bakteriophagie. I. Über Bac. megatherium und den darin anwesenden Bakteriophagen, Zentralbl. Bakter. Parasitenkund. Abt. I. Orig., 120.

  65. Wollman, E. (1928) Bactériophagie et processus similaires. Hérédité ou infection, Bull. Inst. Pasteur, 26, 1-14.

    Google Scholar 

  66. Wollman, E. (1934) Bactériophagie (autolyse hérédocontagieuse) et bactériophages (facteurs lysogènes), Bull. Inst. Pasteur, 32, 945-955.

    Google Scholar 

  67. Wollman, E., and Wollman, E. (1936) Régénération des bactériophages chez le B. megatherium lysogène, CR Soc. Biol., 122, 190-192.

    Google Scholar 

  68. Wollman, E., and Wollman, E. (1937) Les phases de bacteriophages (facteurs lysogènes), CR Soc. Biol., 124, 931-934.

    Google Scholar 

  69. Lwoff, A., and Gutmann, A. (1950) Recherches sur un Bacillus megatherium lysogene, Ann. Inst. Pasteur (Paris), 78, 711-739.

    CAS  Google Scholar 

  70. Lwoff, A., Siminovitch, L., and Kjeldgaard, N. (1950) Induction of the production of bacteriophages in lysogenic bacteria, Ann. Inst. Pasteur (Paris), 79, 815-859.

    CAS  Google Scholar 

  71. Hershey, A. D. (1975) Fag Lyambda, Mir, Moscow, pp. 7-20.

  72. Hershey, A. D. (1975) Fag Lyambda, Mir, Moscow, pp. 21-64.

  73. Gottesman, M. E., and Weisberg, R. A. (2004) Little lambda, who made thee? Microbiol. Mol. Biol. Rev., 68, 796-813, doi: https://doi.org/10.1128/MMBR.68.4.796-813.2004 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hayes, W. (1980) Portraits of viruses: bacteriophage lambda, Intervirology, 13, 133-153, doi: https://doi.org/10.1159/000149119 .

    Article  CAS  PubMed  Google Scholar 

  75. Casjens, S. R., and Hendrix, R. W. (2015) Bacteriophage lambda: early pioneer and still relevant, Virology, 479-480, 310-330, doi: https://doi.org/10.1016/j.virol.2015.02.010 .

    Article  CAS  PubMed  Google Scholar 

  76. Lederberg, J., and Tatum, E. L. (1946) Gene recombination in Escherichia coli, Nature, 158, 558, doi: https://doi.org/10.1038/158558a0 .

    Article  CAS  PubMed  Google Scholar 

  77. Lederberg, E. M. (1951) Lysogenicity in E. coli K-12, Genetics, 36, 560-560.

    Google Scholar 

  78. Campbell, A. (2007) Phage integration and chromosome structure. A personal history, Annu. Rev. Genet., 41, 1-11, doi: https://doi.org/10.1146/annurev.genet.41.110306.130240 .

    Article  CAS  PubMed  Google Scholar 

  79. Lederberg, E. M., and Lederberg, J. (1953) Genetic studies of lysogenicity in Escherichia coli, Genetics, 38, 51-64.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wollman, E., and Jacob, F. (1957) Sur les processus de conjugaison et de recombinaison chez Escherichia coli. 2. La localisation chromosomique du prophage-gamma et les consequences genetiques de l’induction zygotique, Ann. Inst. Pasteur, 93, 323-339.

    CAS  Google Scholar 

  81. Ptashne, M. (1967) Isolation of the lambda phage repressor, Proc. Natl. Acad. Sci. USA, 57, 306-313, doi: https://doi.org/10.1073/pnas.57.2.306 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ptashne, M. (1986) A Genetic Switch. Gene Control and Phage Lambda, Cell Press & Blackwell Scientific Publications, Cambridge University Press.

  83. Zinder, N. D. (1992) Forty years ago: the discovery of bacterial transduction, Genetics, 132, 291-294.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Morse, M. L., Lederberg, E. M., and Lederberg, J. (1956) Transduction in Escherichia coli K-12, Genetics, 41, 142-156.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Fruciano, D. E., and Bourne, S. (2007) Phage as an antimicrobial agent: d’Herelle’s heretical theories and their role in the decline of phage prophylaxis in the West, Can. J. Infect. Dis. Med. Microbiol., 18, 19-26, doi: https://doi.org/10.1155/2007/976850 .

    Article  PubMed  PubMed Central  Google Scholar 

  86. Summers, W. C. (2012) The strange history of phage therapy, Bacteriophage, 2, 130-133, doi: https://doi.org/10.4161/bact.20757 .

    Article  PubMed  PubMed Central  Google Scholar 

  87. Summers, W. C. (2001) Bacteriophage therapy, Annu. Rev. Microbiol., 55, 437-451, doi: https://doi.org/10.1146/annurev.micro.55.1.437 .

    Article  CAS  PubMed  Google Scholar 

  88. Almeida, G. M. F., and Sundberg, L. R. (2020) The forgotten tale of Brazilian phage therapy, Lancet Infect. Dis., 20, e90-e101, doi: https://doi.org/10.1016/S1473-3099(20)30060-8 .

    Article  CAS  PubMed  Google Scholar 

  89. Myelnikov, D. (2018) An alternative cure: the adoption and survival of bacteriophage therapy in the USSR, 1922-1955, J. Hist. Med. Allied Sci., 73, 385-411, doi: https://doi.org/10.1093/jhmas/jry024 .

    Article  PubMed  PubMed Central  Google Scholar 

  90. Gelman, D., Eisenkraft, A., Chanishvili, N., Nachman, D., Coppenhagem Glazer, S., and Hazan, R. (2018) The history and promising future of phage therapy in the military service, J. Trauma Acute Care Surg., 85, S18-S26, doi: https://doi.org/10.1097/TA.0000000000001809 .

    Article  PubMed  Google Scholar 

  91. Chanishvili, N. (2012) Phage therapy – history from Twort and d’Herelle through Soviet experience to current approaches, Adv. Virus Res., 83, 3-40, doi: https://doi.org/10.1016/B978-0-12-394438-2.00001-3 .

    Article  CAS  PubMed  Google Scholar 

  92. Zaffiri, L., Gardner, J., and Toledo-Pereyra, L. H. (2012) History of antibiotics. From Salvarsan to cephalosporins, J. Invest. Surg., 25, 67-77, doi: https://doi.org/10.3109/08941939.2012.664099 .

    Article  PubMed  Google Scholar 

  93. Summers, W. C. (1993) Cholera and plague in India: the bacteriophage inquiry of 1927-1936, J. Hist. Med. Allied Sci., 48, 275-301, doi: https://doi.org/10.1093/jhmas/48.3.275 .

    Article  CAS  PubMed  Google Scholar 

  94. D’Hérelle, F., and Malone, R. H. (1927) A preliminary report of work carried out by the cholera bacteriophage enquiry, Ind. Med. Gaz., 62, 614-616.

    PubMed  PubMed Central  Google Scholar 

  95. D’Hérelle, F. (1929) Studies upon asiatic cholera, Yale J. Biol. Med., 1, 195-219.

    PubMed  PubMed Central  Google Scholar 

  96. D’Hérelle, F. (1931) Bacteriophage as a treatment in acute medical and surgical infections, Bull. N Y Acad. Med., 7, 329-348.

    PubMed  PubMed Central  Google Scholar 

  97. Kuhl, S. J., and Mazure, H. (2011) D’Hérelle. Preparation of therapeutic bacteriophages, Appendix 1 from: Le Phénomène de la Guérison dans les maladies infectieuses: Masson et Cie, 1938, Paris–OCLC 5784382, Bacteriophage, doi: https://doi.org/10.4161/bact.1.2.15680 .

  98. Eaton, M. D., and Bayne-Jones, S. (1934) Bacteriophage therapy: review of the principles and results of the use of bacteriophage in the treatment of infections, J. Am. Med. Assoc., 103, 1769-1776.

    Article  CAS  Google Scholar 

  99. Krueger, A. P., and Scribner, E. J. (1941) The bacteriophage: its nature and its therapeutic use, J. Am. Med. Assoc., 116, 2269-2277.

    Article  Google Scholar 

  100. Morton, H. E., and Engley, F. B., Jr. (1945) Dysentery bacteriophage. Review of the literature on its prophylactic and therapeutic uses in man and in experimental infections in animals, J. Am. Med. Assoc., 127, 584-591.

    Article  Google Scholar 

  101. Kazarnovskaya, S. S. (1932) Bacteriophagy, Izdatelstvo Akademii Nauk, Leningrad.

  102. Tsulukidze, A. (1941) Examples of Bacteriophage Use for War-Time Trauma, Grizmedizdat, Tbilisi.

  103. Pokrovskaya, M. P., Kaganova, L. S., Morozenko, M. A., Bulgakova, and Skatsenko, E. E. (1941) Treatment of Wounds with Bacteriophage, Medgiz, Moscow-Leningrad.

  104. Pavlova, L. I., Sumarokov, A. A., Solodovnikov, Yu. P., and Nikityuk, N. M. (1973) On the issue of using dysentry bacteriophage as a dystentry prophylactis measure (literature review), Zh. Mikrobiol. Epidem. Immunobiol., 50, 27-32.

    CAS  Google Scholar 

  105. Solodovnikov, Yu. P., Pavlova, L. I., Garnova, N. A., Nogteva, Yu. B., and Sotemsky, Yu. S. (1971) Prohylactic application of the dry polivalent dysentry bacteriophage with pectin in child care centers. Part 2. On estanblishing tactics and scheme of bacteriphage application under modern conditions, Zh. Mikrobiol. Epidem. Immunobiol., 48, 123-127.

    Google Scholar 

  106. Solodovnikov, Yu. P., Pavlova, L. I., Emel’anov, P. I., Garnova, N. A., Nogteva, Yu. B., Sotemsky, Yu. S., Bogdashich, O. M., and Arshinova, V. V. (1970) Prohylactic application of the dry polivalent dysentry bacteriophage with pectin in child care centers. Part 1. Results of strictly controlled epidemiological trial (Yaroslavl, 1968), Zh. Mikrobiol. Epidem. Immunobiol., 47, 131-137.

    Google Scholar 

  107. Jones, E. H., Letarov, A. V., and Clokie, M. (2020) Neat science in a messy world: the global impact of human behavior on phage therapy, past and present, PHAGE, 1, 16-22.

    Article  Google Scholar 

  108. Phage and the Origins of Molecular Biology (1966) (Cairns, J., Stent, G. S., and Watson, J. D., eds.) Cold Springs Harbor Laboratory Press, New York.

  109. Fischer, E. P., and Lipson, C. (1988) Thinking About Science: Max Delbrück and the Origins of Molecular Biology, Norton, New York.

  110. Ellis, E. L., and Delbruck, M. (1939) The growth of bacteriophage, J. Gen. Physiol., 22, 365-384, doi: https://doi.org/10.1085/jgp.22.3.365 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Northrop, J. H. (1939) Increase in bacteriophage and gelatinase concentration in cultures of Bacillus megatherium, J. Gen. Physiol., 23, 59-79, doi: https://doi.org/10.1085/jgp.23.1.59 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Delbrück, M. (1940) Adsorption of bacteriophage under various physiological conditions of the host, J. Gen. Physiol., 23, 631-642, doi: https://doi.org/10.1085/jgp.23.5.631 .

    Article  PubMed  PubMed Central  Google Scholar 

  113. Delbrück, M. (1945) Effects of specific antisera on the growth of bacterial viruses (bacteriophages), J. Bacteriol., 50, 137-150.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Delbrück, M. (1940) The growth of bacteriophage and lysis of the host, J. Gen. Physiol., 23, 643-660, doi: https://doi.org/10.1085/jgp.23.5.643 .

    Article  PubMed  PubMed Central  Google Scholar 

  115. Luria, S. E., and Delbruck, M. (1943) Mutations of bacteria from virus sensitivity to virus resistance, Genetics, 28, 491-511.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Newcombe, H. B. (1949) Origin of bacterial variants, Nature, 164, 150, doi: https://doi.org/10.1038/164150a0 .

    Article  CAS  PubMed  Google Scholar 

  117. Luria, S. E., and Anderson, T. F. (1942) The identification and characterization of bacteriophages with the electron microscope, Proc. Natl. Acad. Sci. USA, 28, 127-130, doi: https://doi.org/10.1073/pnas.28.4.127 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Luria, S. E., and Latarjet, R. (1947) Ultraviolet irradiation of bacteriophage during intracellular growth, J. Bacteriol., 53, 149-163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Avery, O. T., Macleod, C. M., and McCarty, M. (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus type III, J. Exp. Med., 79, 137-158, doi: https://doi.org/10.1084/jem.79.2.137 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Doermann, A. H. (1952) The intracellular growth of bacteriophages. I. Liberation of intracellular bacteriophage T4 by premature lysis with another phage or with cyanide, J. Gen. Physiol., 35, 645-656, doi: https://doi.org/10.1085/jgp.35.4.645 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Anderson, T. F., and Doermann, A. H. (1952) The intracellular growth of bacteriophages. II. The growth of T3 studied by sonic disintegration and by T6-cyanide lysis of infected cells, J. Gen. Physiol., 35, 657-667, doi: https://doi.org/10.1085/jgp.35.4.657 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Séchaud, J., and Kellenberger, E. (1956) Lyse précoce, provoquée par le chloroforme, chez les bactéries infectées par du bactériophage, Ann. Inst. Pasteur (Paris), 90, 102-106.

    Google Scholar 

  123. Delbrück, M. (1945) Interference between bacterial viruses; the mutual exclusion effect and the depressor effect, J. Bacteriol., 50, 151-170.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Delbrück, M., and Bailey, W. T. (1946) Induced mutations in bacterial viruses, Cold Spring Harbor Symposia on Quantitative Biology, 11, 33-37.

    Article  Google Scholar 

  125. Hershey, A. D. (1946) Mutation of bacteriophage with respect to type of plaque, Genetics, 31, 620-640.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Luria, S. E. (1945) Mutations of bacterial viruses affecting their host range, Genetics, 30, 84-99.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Luria, S. E. (1948) Sex in bacteria and viruses, Sci. Mon., 66, 159-162.

    CAS  PubMed  Google Scholar 

  128. Luria, S. E. (1947) Reactivation of ultraviolet-inactivated bacteriophage particles inside double-infected host cells, J. Bacteriol., 54, 79.

    CAS  PubMed  Google Scholar 

  129. Hershey, A. D., and Rotman, R. (1949) Genetic recombination between host-range and plaque-type mutants of bacteriophage in single bacterial cells, Genetics, 34, 44-71.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Benzer, S. (1955) Fine structure of a genetic region in bacteriophage, Proc. Natl. Acad. Sci. USA, 41, 344-354, doi: https://doi.org/10.1073/pnas.41.6.344 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Crick, F. H., Barnett, L., Brenner, S., and Watts-Tobin, R. J. (1961) General nature of the genetic code for proteins, Nature, 192, 1227-1232, doi: https://doi.org/10.1038/1921227a0 .

    Article  CAS  PubMed  Google Scholar 

  132. Hershey, A. D., and Chase, M. (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage, J. Gen. Physiol., 36, 39-56, doi: https://doi.org/10.1085/jgp.36.1.39 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Salmond, G. P., and Fineran, P. C. (2015) A century of the phage: past, present and future, Nat. Rev. Microbiol., 13, 777-786, doi: https://doi.org/10.1038/nrmicro3564 .

    Article  CAS  PubMed  Google Scholar 

  134. Sanger, F., Air, G. M., Barrell, B. G., Brown, N. L., Coulson, A. R., Fiddes, C. A., Hutchison, C. A., Slocombe, P. M., and Smith, M. (1977) Nucleotide sequence of bacteriophage phi X 174 DNA, Nature, 265, 687-695, doi: https://doi.org/10.1038/265687a0 .

    Article  CAS  PubMed  Google Scholar 

  135. Barderas, R., and Benito-Pena, E. (2019) The 2018 Nobel Prize in chemistry: phage display of peptides and antibodies, Anal. Bioanal. Chem., 411, 2475-2479, doi: https://doi.org/10.1007/s00216-019-01714-4 .

    Article  CAS  PubMed  Google Scholar 

  136. Calendar, R. (2006) The Bacteriophages, 2 Edn., Oxford University Press, p. 746.

  137. Weinbauer, M. G. (2004) Ecology of prokaryotic viruses, FEMS Microbiol. Rev., 28, 127-181, doi: https://doi.org/10.1016/j.femsre.2003.08.001 .

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is grateful to E. E. Kulikov for invaluable comments and help in the preparation of this manuscript.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-14-50503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Letarov.

Ethics declarations

The authors declare no conflicts of interests. The article contains no description of studies with the participation of humans or animals conducted by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Letarov, A.V. History of Early Bacteriophage Research and Emergence of Key Concepts in Virology. Biochemistry Moscow 85, 1093–1112 (2020). https://doi.org/10.1134/S0006297920090096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920090096

Keywords

Navigation