Skip to main content
Log in

Effect of Iron–Nitric Oxide Complexes on the Reactivity of Hemoglobin Cysteines

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Human erythrocyte hemoglobin (Hb) has two reactive cysteines located on the surface of β-subunits. These cysteines play an important role in the adjustment of Hb functions. It is known that they are involved in the transport of intracellular nitric oxide (NO), redox signaling, and the regulation of dimeric-tetrameric Hb equilibrium. It is shown in this work that the incorporation of Cys-93β as ligands in iron-NO complexes is another way to regulate of SH group reactivity. Such complexes stabilize the SH group as a thiolate anion (R–S–), the reactivity of which is significantly higher than that of the protonated form of thiol (Cys-SH). This is why the thiols included in the complexes show increased activity in relation to electrophilic agents, such as ThioGlo1. Conversely, as part of the complexes, thiols are protected from oxidation by tert-butyl hydroperoxide. The incorporation of SH groups into complexes of iron and NO can be considered a means of thiol protection from irreversible oxidation upon oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Giles, N.M., Watts, A.B., Giles, G.I., Fry, F.H., Littlechild, J.A., and Jacob, C., Chem. Biol., 2003, vol. 10, no. 8, pp. 677–693.

    Article  CAS  PubMed  Google Scholar 

  2. Paulsen, C.E. and Carroll, K.S., ACS Chem. Biol., 2010, vol. 5, no. 1, pp. 47–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Paulsen, C.E. and Carroll, K.S., Chem. Rev., 2013, vol. 113, no. 7, pp. 4633–4679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Go, Y.M., Chandler, J.D., and Jones, D.P., Free Radic. Biol. Med., 2015, vol. 84, pp. 227–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Klomsiri, C., Karplus, P.A., and Poole, L.B., Antioxid. Redox Signal., 2010, vol. 14, no. 6, pp. 1065–1077.

    Article  PubMed  CAS  Google Scholar 

  6. Gupta, V. and Carroll, K.S., Biochim. Biophys. Acta, 2013, vol. 1840, no. 2, pp. 847–875.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Novikova, N.N., Kovalchuk, M.V., Yurieva, E.A., Konovalov, O.V., Stepina, N.D., Rogachev, A.V., Yalovega, G.E., Kosmachevskaya, O.V., Topunov, A.F., and Yakunin, S.N., J. Phys. Chem. B, 2019, vol. 123, no. 40, pp. 8370–8377.

    Article  CAS  PubMed  Google Scholar 

  8. Lo, ConteM. and Carroll, K.S., J. Biol. Chem., 2013, vol. 288, no. 37, pp. 26480–26488.

  9. Wible, R.S. and Sutter, T.R., Chem. Res. Toxicol., 2017, vol. 30, no. 3, pp. 729–762.

    Article  CAS  PubMed  Google Scholar 

  10. Kosmachevskaya, O.V., Shumaev, K.B., and Topunov, A.F., Biochemistry (Moscow), 2019, vol. 84, suppl. 1, pp. S206–S224.

    CAS  PubMed  Google Scholar 

  11. Foyer, C.H., Wilson, M.H., and Wright, M.H., Free Radic. Biol. Med., 2018, vol. 122, pp. 137–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vanin, A.F., Nitric Oxide, 2016, vol. 54, pp. 15–29. https://doi.org/10.1016/j.niox.2016.01.006

    Article  CAS  PubMed  Google Scholar 

  13. Vanin, A.F., Dinitrosyl Iron Complexes as a “Working Form” of Nitric Oxide in Living Organisms, Cambridge: Scholars Publishing, 2019.

    Google Scholar 

  14. Reischl, E., Dafre, A.L., Franco, J.L., and Wilhelm Filho, D., Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2007, vol. 146, nos. 1–2, pp. 22–53.

    Article  PubMed  CAS  Google Scholar 

  15. Shumaev, K.B., Gubkin, A.A., Serezhenkov, V.A., Lobysheva, I.I., Kosmachevskaya, O.V., Ruuge, E.K., Lankin, V.Z., Topunov, A.F., and Vanin, A.F., Nitric Oxide, 2008, vol. 18, no. 1, pp. 37–46.

    Article  CAS  PubMed  Google Scholar 

  16. Shumaev, K.B., Kosmachevskaya, O.V., Timoshin, A.A., Vanin, A.F., and Topunov, A.F., Methods Enzymol., 2008, vol. 436, pp. 445–461.

    Article  CAS  PubMed  Google Scholar 

  17. Shumaev, K.B., Petrova, N.E., Zabbarova, I.V., Vanin, A.F., Topunov, A.F., Lankin, V.Z., and Ruuge, E.K., Biochemistry (Moscow), 2004, vol. 69, no. 5, pp. 569–574.

    CAS  PubMed  Google Scholar 

  18. Shumaev, K.B., Dudylina, A.L., Ivanova, M.V., Pugachenko, I.S., and Ruuge, E.K., Biofactors, 2018, vol. 44, no. 3, pp. 237–244.

    Article  CAS  PubMed  Google Scholar 

  19. Shumaev, K.B., Gorudko, I.V., Kosmachevskaya, O.V., Grigoryeva, D.V., Panasenkoe, O.M., Vanin, A.F., Topunov, A.F., Terekhova, M.S., Sokolov, A.V., Cherenkevich, S.N., and Ruuge, E.K., Oxid. Med. Cell. Longev., 2019, vol. 2019, article ID 2798154. https://doi.org/10.1155/2019/2798154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Domanski, A.V., Lapshina, E.A., and Zavodnik, I.B., Biochemistry (Moscow), 2005, vol. 70, no. 7, pp. 761–769.

    CAS  PubMed  Google Scholar 

  21. Shumaev, K.B., Gubkin, A.A., Gubkina, S.A., Gudkov, L.L., Lakomkin, V.L., Topunov, A.F., Vanin, A.F., and Ruuge, E.K., Biophysics (Moscow), 2007, vol. 52, no. 3, pp. 336–339.

    Article  Google Scholar 

  22. Hoff, S., Larsen, F.H., Andersen, M.L., and Lund, M.N., Analyst, 2013, vol. 138, no. 7, pp. 2096–2103.

    Article  CAS  PubMed  Google Scholar 

  23. Davies, K.J. and Delsignore, M.E., J. Biol. Chem., 1987, vol. 262, no. 20, pp. 9908–9913.

    CAS  PubMed  Google Scholar 

  24. Laemmli, U.K., Nature, 1970, vol. 227, no. 5259, pp. 680–685.

    Article  CAS  PubMed  Google Scholar 

  25. Blacken, G.R., Wang, Y., Lopez, J.A., and Fu, X., Blood, 2009, vol. 114, no. 22, pp. 4040–4040.

    Article  Google Scholar 

  26. Riggs, A., J. Biol. Chem., 1961, vol. 236, no. 7, pp. 1948–1954.

    CAS  PubMed  Google Scholar 

  27. Benesch, R.E. and Benesch, R., Biochemistry, 1962, vol. 1, no. 5, pp. 735–738.

    Article  CAS  PubMed  Google Scholar 

  28. Gorbunov, N.V., Osipov, A.N., Day, B.W., Zayas-Rivera, B., Kagan, V.E., and Elsayed, N.M., Biochemistry, 1995, vol. 34, no. 20, pp. 6689–6699.

    Article  CAS  PubMed  Google Scholar 

  29. Gorbunov, N.V., Yalowich, J.C., Gaddam, A., Thampatty, P., Ritov, V.B., Kisin, E.R., Elsayed, N.M., and Kagan, V.E., J. Biol. Chem., 1997, vol. 272, no. 19, pp. 12328–12341.

    Article  CAS  PubMed  Google Scholar 

  30. Reeder, B.J., Grey, M., Silaghi-Dumitrescu, R.-L., Svistunenko, D.A., Bulow, L., Cooper, C.E., and Wilson, M.T., J. Biol. Chem., 2008, vol. 283, no. 45, pp. 30780–30787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vlasova, I.I., Molecules, 2018, vol. 23, no. 10. e2561. https://doi.org/10.3390/molecules23102561

    Article  CAS  PubMed  Google Scholar 

  32. Bhattacharjee, S., Deterding, L.J., Jiang, J., Bonini, M.G., Tomer, K.B., Ramirez, D.C., and Mason, R.P., J. Am. Chem. Soc., 2007, vol. 129, no. 44, pp. 13493–13501.

    Article  CAS  PubMed  Google Scholar 

  33. Gunther, M.R., Sturgeon, B.E., and Mason, R.P., Toxicology, 2002, vol. 177, no. 1, pp. 1–9.

    Article  CAS  PubMed  Google Scholar 

  34. Steffek, R.P. and Thomas, M.J., Free Radic. Res. Commun., 1991, vol. 12-13, no. 2, pp. 489–497.

    Article  CAS  Google Scholar 

  35. Jia, Y., Buehler, P.W., Boykins, R.A., Venable, R.M., and Alayash, A.I., J. Biol. Chem., 2007, vol. 282, no. 7, pp. 4894–4907.

    Article  CAS  PubMed  Google Scholar 

  36. Laguerre, M., Bily, A., Roller, M., and Birtic, S., Annu. Rev. Food Sci. Technol., 2017, vol. 8, pp. 391–411.

    Article  CAS  PubMed  Google Scholar 

  37. Shumaev, K.B., Gubkin, A.A., Gubkina, S.A., Gudkov, L.L., Sviryaeva, I.V., Timoshin, A.A., Topunov, A.F., Vanin, A.F., and Ruuge, E.K., Biophysics (Moscow), 2006, vol. 51, no. 3, pp. 423–428.

    Article  Google Scholar 

  38. Shumaev, K.B., Gubkina, S.A., Vanin, A.F., Burbaev, D.Sh., Mokh, V.P., Topunov, A.F., and Ruuge, E.K., Biophysics (Moscow), 2013, vol. 58, no. 2, pp. 172–177.

    Article  CAS  Google Scholar 

  39. Winterbourn, C.C. and Carrell, R.W., Biochem. J., 1977, vol. 165, no. 1, pp. 141–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pimenova, T., Pereira, C.P., Gehrig, P., Buehler, P.W., Schaer, D.J., and Zenobi, R., J. Proteome Res., 2010, vol. 9, no. 8, pp. 4061–4070.

    Article  CAS  PubMed  Google Scholar 

  41. Stamler, J.S., Singel, D.J., and Piantadosi, C.A., Nat. Med., 2008, vol. 14, no. 10, pp. 1008–1009.

    Article  CAS  PubMed  Google Scholar 

  42. Jensen, F.B., J. Exp. Biol., 2009, vol. 212, no. 21, pp. 3387–3393.

    Article  CAS  PubMed  Google Scholar 

  43. Gaston, B., May, W.J., Sullivan, S., Yemen, S., Marozkina, N.V., Palmer, L.A., Bates, J.N., and Lewis, S.J., J. Appl. Physiol., 2014, vol. 116, no. 10, pp. 1290–1299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao, Y., Wang, X., Noviana, M., and Hou, M., Acta Biochim. Biophys. Sin., 2018, vol. 50, no. 7, pp. 621–634.

    Article  CAS  PubMed  Google Scholar 

  45. Kosmachevskaya, O.V., Nasybullina, E.I., Blindar, V.N., and Topunov, A.F., Appl. Biochem. Microbiol., 2019, vol. 55, no. 2, pp. 83–98.

    Article  CAS  Google Scholar 

  46. O'Neill, J.S. and Reddy, A.B., Nature, 2011, vol. 469, no. 7331, pp. 498–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Balagopalakrishna, C., Abugo, O.O., Horsky, J., Manoharan, P.T., Nagababu, E., and Rifkind, J.M., Biochemistry, 1998, vol. 37, no. 38, pp. 13194–13202.

    Article  CAS  PubMed  Google Scholar 

  48. Vitturi, D.A., Sun, C.W., Harper, V.M., Thrash-Williams, B., Cantu-Medellin, N., Chacko, B.K., Peng, N., Dai, Y., Wyss, J.M., Townes, T., and Patel, R.P., Free Radic. Biol. Med., 2013, vol. 55, pp. 119–129.

    Article  CAS  PubMed  Google Scholar 

  49. Jakob, U., Eser, M., and Bardwell, J.C.A., J. Biol. Chem., 2001, vol. 275, no. 49, pp. 38302–38310.

    Article  Google Scholar 

  50. Kaim, W. and Schwederski, B., in Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, Meyer, G.N.A., Ed., Chichester, UK: Wiley, 1991, pp. 330–350.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The equipment of the Industrial Biotechnologies Center for Collective Use of the Research Center of Biotechnology, Russian Academy of Sciences, was used for the research.

This work was supported by the Russian Foundation for Basic Research (project no. 19-29-12052) and the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Kosmachevskaya.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by I. Shipounova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosmachevskaya, O.V., Nasybullina, E.I., Shumaev, K.B. et al. Effect of Iron–Nitric Oxide Complexes on the Reactivity of Hemoglobin Cysteines. Appl Biochem Microbiol 56, 512–520 (2020). https://doi.org/10.1134/S0003683820050099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683820050099

Keywords:

Navigation