Skip to main content
Log in

Polymeric Hydrogels for Controlled Insulin Release

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

On the example of published and new experimental data, it was shown that insulin-containing hydrogels based on copolymers of N-(2-D-glucose)acrylamide and acrylamide crosslinked by Concanavalin A can simulate one of the functions of the pancreas, i.e., they can secrete insulin upon an increase in the glucose concentration in the surrounding medium, including a two-stage mechanism with the maximum rate in the first stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Saffran, M., in Targeting of Drugs: The Challenge of Peptides and Proteins, Gregoriadis, G., Ed., New York: Plenum, 1992, pp. 89–95.

    Google Scholar 

  2. Murray, R.K., Granner, D.K., Mayes, P.A., and Rodwell, V.W., Harper’s Biochemistry, Norwalk, Connecticut/San Mateo. California: Appleton and Lange.

  3. Brownlee, M. and Cerami, A., Science, 1979, vol. 206, no. 4423, pp. 1190–1191.

    Article  CAS  Google Scholar 

  4. Kim, S.W., Pai, C.M., Makino, K., Semionoff, L.A., Holmberg, D.L., Gleeson, Y.M., Wilson, D.E., and Mack, E.Y., J. Control Release, 1990, vol. 11, pp. 193–201.

    Article  CAS  Google Scholar 

  5. Valuev, L.I., Starosel’tseva, L.K., Valuev, I.L., and Vanchugova, L.V., Khim. Farm. Zh., 2019, vol. 53, no. 4, pp. 20–23.

    Google Scholar 

  6. Liu, F., Song, S.C., Mix, D., Baudys, M., and Kim, S.W., Bioconjug. Chem., 1997, vol. 8, no. 5, pp. 664–672.

    Article  CAS  Google Scholar 

  7. Yin, R., Bai, M., He, J., Nie, J., and Zhang, W., Int. J. Biol. Macromol., 2019, vol. 124, pp. 724–732.

    Article  CAS  Google Scholar 

  8. Sato, K., Kodama, D., Endo, Y., and Anzai, J., J. Nanosci. Nanotechnol., 2009, vol. 9, no. 1, pp. 386–390.

    Article  CAS  Google Scholar 

  9. Benzeval, I., Bowyer, A., and Hubble, J., J. Eur. Pharm. Biopharm., 2012, vol. 80, no. 1, pp. 143–148.

    Article  CAS  Google Scholar 

  10. Taylor, M.J., Tanna, S., and Sahota, T.S., Drug. Dev. Ind. Pharm., 2008, vol. 34, no. 1, pp. 73–82.

    Article  CAS  Google Scholar 

  11. Taylor, M.J., Tanna, S., and Sahota, T.S., Pharm. Dev. Technol., 2010, vol. 15, no. 1, pp. 80–88.

    Article  CAS  Google Scholar 

  12. Yin, R., Tong, Z., Yang, D., and Nie, J., Carbohydr. Res., 2012, vol. 89, no. 1, pp. 117–123.

    Article  CAS  Google Scholar 

  13. Tanna, S., Taylor, M.J., Sahota, T.S., and Sawicka, K., Biomaterials, 2006, vol. 27, no. 8, pp. 1586–1597.

    Article  CAS  Google Scholar 

  14. Tanna, S., Sahota, T.S., Sawicka, K., and Taylor, M.J., Biomaterials, 2006, vol. 27, no. 25, pp. 4498–4507.

    Article  CAS  Google Scholar 

  15. Yin, R., Wang, K., Du, S., Chen, L., Nie, J., and Zhang, W., Carbohydr. Res., 2014, vol. 103, pp. 369–376.

    Article  CAS  Google Scholar 

  16. Bai, M., He, J., Kang, L., Nie, J., and Yin, R., Int. J. Biol. Macromol., 2018, vol. 113, pp. 889–899.

    Article  CAS  Google Scholar 

  17. Valuev, I.L., Valuev, L.I., Vanchugova, L.V., and Obydennova, I.V., Vysokomol. Soedin. B, 2015, vol. 57, no. 5, pp. 334–337.

    Google Scholar 

  18. Valuev, I.L., Chupov, V.V., Valuev, L.I., Sytov, G.A., and Plate, N.A., Vysokomol. Soedin. B, 1997, vol. 39, no. 4, pp. 751–754.

    CAS  Google Scholar 

  19. Ivakura, Y., Imai, Y., and Vagu, Y., J. Polym. Sci. A-1, 1968, vol. 6, no. 6, pp. 1625–1632.

  20. Obaidat, A.A. and Park, K., Biomaterials, 1997, vol. 18, no. 11, pp. 801–806.

    Article  CAS  Google Scholar 

  21. Valuev, I.L., Vanchugova, L.V., and Valuev, L.I., Vysokomol. Soedin. A, 2011, vol. 53, no. 5, pp. 691–695.

    Google Scholar 

  22. Vanchugova, L.I., Valuev, L.I., Valuev, I.L., and Talyzenkov, Yu.A., Vysokomol. Soedin. B, 2013, vol. 55, no. 2, pp. 225–228.

    Google Scholar 

  23. Valuev, I.L., Valuev, L.I., Vanchugova, L.V., and Obydennova, I.V., Vysokomol. Soedin. A, 2018, vol. 60, no. 4, pp. 308–311.

    Google Scholar 

  24. Biosovmestimost' (Biocompatibility), Sevast’yanov, V.I., Ed., Moscow: Informatsionnyi Tsentr VNIIgeosistem, 1999.

  25. Valuev, I.L., Valuev, L.I., Vanchugova, L.V., and Valueva, T.A., App. Biochem. Microbiol., 2013, vol. 49, no. 3, pp. 312–314.

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out as part of the State assignment of the Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Valuev.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on animal welfare. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by G. Levit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valuev, I.L., Vanchugova, L.V. & Valuev, L.I. Polymeric Hydrogels for Controlled Insulin Release. Appl Biochem Microbiol 56, 505–511 (2020). https://doi.org/10.1134/S0003683820050154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683820050154

Keywords:

Navigation