Skip to main content
Log in

Influence of Sediment Mobility on Universal von Kármán Coefficient k and Traversing Length of Eddy in Fluvial Streams

  • HYDROPHYSICAL PROCESSES
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Sediment mobility in stream corroborates many significant mechanisms in terms of interactions of transported particles in the carrier fluid flows. In general, the sediment entrainment in stream refers to temporal and continual motion of non-cohesive grains. This phenomenon significantly influences the near-bed turbulent flow characteristics in streams. Laboratory experiments were conducted in a rectangular open-channel flume of 15 m long, 0.90 m wide and 0.75 m deep fitted with side glass walls and the study is concerned with the determination of von Kármán coefficient with non-cohesive bed-load to strive the eddy traversing length, sizes and TKE dissipation rate close to the bed. Two modes of experimental conditions are considered: (1) immobile-bed with no sediment transport known as clear-water flows; and (2) continuous weak bed-load sediment transport, without bed-forms development refer to a mobile-bed flows. In both cases, the sediment beds should remain flat and hydraulically rough. The experimental result reveals that the von Kármán coefficient goes down in the traditional log-law of wall in mobile-bed streams with respect to the flow over an immobile bed. A close observation in sediment mobility due to bed load transport shows the reduction in traversing length of an eddy and increment in near-bed eddy size. The increment in near-bed eddy sizes are attributed to the reduction in turbulent kinetic energy dissipation rate close to the stream bed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Bennet, S.J. and Bridge, J.S., An experimental study of flow, bed load transport and bed topography under conditions of erosion and deposition and comparison with theoretical models, Sedimentology, 1995, vol. 42, no. 1, pp. 117–146.

    Article  Google Scholar 

  2. Bennett, S.J., Bridge J.S., and Best J.L., Fluid and sediment dynamics of upper stage plane beds, J. Geophys. Res., 1998, vol. 103, no. 1, pp. 1239–1274.

    Article  Google Scholar 

  3. Best, J., Bennett, S., Bridge, J., and Leeder, M., Turbulence modulation and particle velocities over flat sand beds at low transport rates, J. Hydraul. Eng., 1997, vol. 123, no. 12, pp. 1118–1129.

    Article  Google Scholar 

  4. Blanckaert, K. and Lemmin, U., Means of noise reduction in acoustic turbulence measurements, J. Hydraul. Res., 2006, vol. 44, no. 1, pp. 1–17.

    Article  Google Scholar 

  5. Crowe, C.T., Modelling turbulence in multiphase flows, Engineering Turbulence Modelling and Experiments, 1993, vol. 2, Rodi, W. and Martelli, F., Eds., Amsterdam: Elsevier, pp. 899–913.

    Google Scholar 

  6. Dey, S., Das, R., Gaudio R., and Bose, S.K., Turbulence in Mobile-Bed Streams, Acta Geophys.Pol., 2012, vol. 60, no. 6, pp. 1547–1588.

    Article  Google Scholar 

  7. Dey, S. and Raikar, R.V., Characteristics of loose rough boundary streams at near-threshold, J. Hydraul. Eng., 2007, vol. 133, no. 3, pp. 288–304.

    Article  Google Scholar 

  8. Gallagher, M., McEwan, I., and Nikora, V., The changing structure of turbulence over a self-stabilising sediment bed, Internal Report No. 21, Department of Engineering, Univ. Aberdeen, Aberdeen, U.K., 1999.

  9. Gaudio, R., Miglio A., and Dey, S., Nonuniversality of von Kármán’s k in fluvial streams, J. Hydraul. Res., 2010, vol. 48, no. 5, pp. 658–663.

    Article  Google Scholar 

  10. Gaudio, R., Miglio A., and Calomino, F., Friction factor and von Karman’s κ in open channels with bed-load, J. Hydraul. Res., 2011, vol. 49, no. 2, pp. 245–253.

    Article  Google Scholar 

  11. Gore, R.A. and Crowe C.T., Modulation of turbulence by a dispersed phase, J. Fluids Eng., 1991, vol. 113, no. 6, pp. 304–307.

    Article  Google Scholar 

  12. Goring, D.G. and Nikora, V.I., Despiking acoustic Doppler velocimeter data, J. Hydraul. Eng., 2002, vol. 128, no. 1, pp. 117–126.

    Article  Google Scholar 

  13. Gust, G. and Southard, J.B., Effects of weak bed load on the universal law of the wall, J. Geophys. Res. 1983, vol. 88, no. C10, pp. 5939–5952.

    Article  Google Scholar 

  14. Gyr, A. and Schmid, A., Turbulent flows over smooth erodible sand beds in flumes, J. Hydraul. Res., 1997, vol. 35, no. 4, pp. 525–544.

    Article  Google Scholar 

  15. Hetsroni, G., The effect of particles on the turbulence in a boundary layer, in Particulate Two-Phase Flow, Raco, M.C., Ed., Butterworth-Heinemann, 1993, pp. 244–264.

    Google Scholar 

  16. Lacey, R.W.J. and Roy, A.G., Fine-scale characterization of the turbulent shear layer of an instream pebble cluster, J. Hydraul. Eng., 2008, vol. 134, no. 7, pp. 925–936.

    Article  Google Scholar 

  17. Long, C.E., Wiberg, P.L. and Nowell, A.R.M., Evaluation of von Karman’s constant from integral flow parameters, J. Hydraul. Eng., 1993, vol. 119, no. 10, pp. 1182–1190.

    Article  Google Scholar 

  18. Monin, A.S. and Yaglom A.M., Statistical Fluid Mechanics.Vol. II:Mechanics of Turbulence, New York, USA: Dover Publications, 2007.

    Google Scholar 

  19. Nezu, I. and Nakagawa H., Turbulence in Open-Channel Flows, Balkema: Rotterdam, The Netherlands, 1993.

    Google Scholar 

  20. Nikora, V.I. and Goring, D.G., Effects of bed mobility on turbulence structure, NIWA Internal Rep, 48. NIWA, Christchurch NZ, 1998.

    Google Scholar 

  21. Nikora, V.I. and Goring, D., Flow turbulence over fixed and weakly mobile gravel beds, J. Hydraul. Eng., 2000, vol. 126, no. 9, pp. 679–690.

    Article  Google Scholar 

  22. Pope, S.B., Turbulent Flows, UK: Cambridge University Press, 2001.

    Google Scholar 

  23. Segalini, A., Orlu R., and Alfredsson, P.H., Uncertainty analysis of the von Kármán constant, Exp. Fluids, 2013, vol. 54, pp.1460–1468.

    Article  Google Scholar 

  24. Song T., Graf W.H., and Lemmin U., Uniform flow in open channels with movable gravel bed, J. Hydraul. Res., 1994, vol. 32, no. 6, pp. 861–876.

    Article  Google Scholar 

  25. Song, T., Chiew, Y.-M., and Chin, C.O., Effect of bed-load movement on flow friction factor, J. Hydraul. Eng., 1998, vol. 124, no. 2, pp. 165–175.

    Article  Google Scholar 

  26. van Rijn, L.C., Sediment transport, part I: bed-load transport, J. Hydraul. Eng., 1984, vol. 110, no. 10, pp. 1431–1456.

    Article  Google Scholar 

  27. von Kármán, T., Mechanische Ähnlichkeit and Turbulenz, in Nachrichten, Adademie der Wissenschaften Göttingen, Math.-Phys. Klasse 1, 1930, pp. 58–76.

  28. Wang, Z. and Larsen, P., Turbulent structure of water and clay suspensions with bed load, J. Hydraul. Eng., 1994, vol. 120, no. 5, pp. 577–600.

    Article  Google Scholar 

  29. Yang, S.Q., Tan, S.K. and Lim, S.Y., Velocity distribution and dip-phenomenon in smooth uniform open channel flows, J. Hydraul. Eng., 2004, vol. 130, no. 12, pp. 1179–118.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Das Ratul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das Ratul Influence of Sediment Mobility on Universal von Kármán Coefficient k and Traversing Length of Eddy in Fluvial Streams. Water Resour 47, 222–230 (2020). https://doi.org/10.1134/S0097807820020153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807820020153

Keywords:

Navigation