Skip to main content
Log in

Noncrossing structured additive multiple-output Bayesian quantile regression models

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Quantile regression models are a powerful tool for studying different points of the conditional distribution of univariate response variables. Their multivariate counterpart extension though is not straightforward, starting with the definition of multivariate quantiles. We propose here a flexible Bayesian quantile regression model when the response variable is multivariate, where we are able to define a structured additive framework for all predictor variables. We build on previous ideas considering a directional approach to define the quantiles of a response variable with multiple outputs, and we define noncrossing quantiles in every directional quantile model. We define a Markov chain Monte Carlo (MCMC) procedure for model estimation, where the noncrossing property is obtained considering a Gaussian process design to model the correlation between several quantile regression models. We illustrate the results of these models using two datasets: one on dimensions of inequality in the population, such as income and health; the second on scores of students in the Brazilian High School National Exam, considering three dimensions for the response variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Here it was possible to answer the questionnaire based on the education of the man in charge of the person taking the examination. The same applies for mother education.

References

  • Belitz, C., Brezger, A., Klein, N., Kneib, T., Lang, S., Umlauf, N.: BayesX - Software for Bayesian inference in structured additive regression models: Version 3.0. http://www.bayesx.org (2015)

  • Bondell, H., Reich, B., Wang, H.: Noncrossing quantile regression curve estimation. Biometrika 97, 825–838 (2010)

    Article  MathSciNet  Google Scholar 

  • Carlier, G., Chernozhukov, V., Galichon, A.: Vector quantile regression: an optimal transport approach. Ann. Stat. 44, 1165–1192 (2016)

    Article  MathSciNet  Google Scholar 

  • Carlier, G., Chernozhukov, V., Galichon, A.: Vector quantile regression beyond the specified case. J. Multivar. Anal. 161, 96–102 (2017)

    Article  MathSciNet  Google Scholar 

  • Chernozhukov, V., Fernández-Val, I., Galichon, A.: Improving point and interval estimators of monotone functions by rearrangement. Biometrika 96, 559–575 (2009)

  • Chernozhukov, V., Galichon, A., Hallin, M., Henry, M.: Monge-Kantorovich depth, quantiles, ranks and signs. Ann. Stat. 45, 223–256 (2017)

    Article  MathSciNet  Google Scholar 

  • Dyckerhoff, R., Mozharovskyi, P.: Exact computation of the halfspace depth. Comput. Stat. Data Anal. 98, 19–30 (2016)

    Article  MathSciNet  Google Scholar 

  • Gelman, A., Rubin, D.: Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992)

    Article  Google Scholar 

  • Guggisberg, M.: A Bayesian Approach to Multiple-Output Quantile Regression (2019). arXiv:1909.02623

  • Hallin, M., Paindaveine, D., Šiman, M.: Multivariate quantiles and multiple-output regression quantiles: From l1 optimization to halfspace depth. Ann. Stat. 38, 635–669 (2010)

    Article  Google Scholar 

  • Hallin, M., Lu, Z., Paindaveine, D., Šiman, M.: Local bilinear multiple-output quantile/depth regression. Bernoulli 21, 1435–1466 (2015)

    Article  MathSciNet  Google Scholar 

  • Hallin, M., Šiman, M.: Multiple-output quantile regression. In: Koenker, R., Chernozhukov, V., He, X., Peng, L. (eds.) Handbook of Quantile Regression. Chapman and Hall/CRC (2017)

  • He, X.: Quantile curves without crossing. Am. Stat. 51, 186–192 (1997)

    Google Scholar 

  • Ji, Y., Lin, N., Zhang, B.: Model selection in binary and tobit quantile regression using the gibbs sampler. Comput. Stat. Data Anal. 56, 827–839 (2012)

    Article  MathSciNet  Google Scholar 

  • Klein, N., Kneib, T.: Simultaneous inference in structured additive conditional copula regression models: a unifying bayesian approach. Stat. Comput. 26, 841–860 (2016)

    Article  MathSciNet  Google Scholar 

  • Koenker, R.: Quantile Regression. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  • Koenker, R., Bassett, G.: Regression quantiles. Econometrica 46, 33–50 (1978)

    Article  MathSciNet  Google Scholar 

  • Koenker, R., Machado, J.: Goodness of fit and related inference processes for quantile regression. J. Am. Stat. Assoc. 94, 1296–1310 (1999)

    Article  MathSciNet  Google Scholar 

  • Kong, L., Mizera, I.: Quantile tomography: using quantiles with multivariate data. Stat. Sin. 22, 1589–1610 (2012)

    MathSciNet  MATH  Google Scholar 

  • Kozumi, H., Kobayashi, G.: Gibbs sampling methods for bayesian quantile regression. J. Stat. Comput. Simul. 81, 1565–1578 (2011)

    Article  MathSciNet  Google Scholar 

  • Lang, S., Umlauf, N., Wechselberger, P., Harttgen, K., Kneib, T.: Multilevel structured additive regression. Stat. Comput. 24, 223–238 (2014)

    Article  MathSciNet  Google Scholar 

  • Machado, J.A.F., Silva, J.M.C.S.: Quantiles for counts. J. Am. Stat. Assoc. 100, 1226–1237 (2005)

    Article  MathSciNet  Google Scholar 

  • McCowan, T.: Expansion without equity: an analysis of current policy on access to higher education in Brazil. High. Educ. 53, 579–598 (2007)

    Article  Google Scholar 

  • Mosler, K.: Depth statistics. Becker, C., Fried, R., Kuhnt, S. (eds) Robustness and Complex Data Structures, Festschrift in Honour of Ursula Gather, pp. 17–34. Springer, Berlin (2013)

  • Paindaveine, D., Šiman, M.: Computing multiple-output regression quantile regions. Comput. Stat. Data Anal. 56, 840–853 (2012)

    Article  MathSciNet  Google Scholar 

  • Reich, B.J., Fuentes, M., Dunson, D.B.: Bayesian spatial quantile regression. J. Am. Stat. Assoc. 106, 6–20 (2011)

    Article  MathSciNet  Google Scholar 

  • Rodrigues, T., Dortet-Bernadet, J.L., Fan, Y.: Pyramid quantile regression. J. Comput. Graph. Stat. (2019)

  • Rodrigues, T., Dortet-Bernadet, J.L., Fan, Y.: Simultaneous fitting of bayesian penalised quantile splines. Comput. Stat. Data Anal. 134, 93–109 (2019b)

    Article  MathSciNet  Google Scholar 

  • Rodrigues, T., Fan, Y.: Regression adjustment for noncrossing Bayesian quantile regression. J. Comput. Graph. Stat. 26, 275–284 (2017)

    Article  MathSciNet  Google Scholar 

  • Serfling, R.: Quantile functions for multivariate analysis: approaches and applications. Stat. Neerl. 56, 214–232 (2002)

    Article  MathSciNet  Google Scholar 

  • Silbersdorff, A., Lynch, J., Klasen, S., Kneib, T.: Reconsidering the income-health relationship using distributional regression. Health Econ. 27, 1074–1088 (2018)

    Article  Google Scholar 

  • SOEP: Socio-economic Panel Study (SOEP), data of the years 1984–2013, version 30 (2014). https://doi.org/10.5684/soep.v30

  • Sriram, K., Ramamoorthi, R., Ghosh, P.: Posterior consistency of bayesian quantile regression based on the misspecified asymmetric laplace density. Bayesian Anal. 8, 479–504 (2013)

    Article  MathSciNet  Google Scholar 

  • Struyf, A.J., Rousseeuw, P.J.: Halfspace depth and regression depth characterize the empirical distribution. J. Multivar. Anal. 69, 135–153 (1999)

    Article  MathSciNet  Google Scholar 

  • Tokdar, S.T., Kadane, J.B.: Simultaneous linear quantile regression: a semiparametric bayesian approach. Bayesian Anal. 6, 1–22 (2011)

    Article  MathSciNet  Google Scholar 

  • Tukey, J.: Mathematics and the picturing of data. In: Proceedings of the International Congress of Mathematics (1975)

  • Waldmann, E., Kneib, T., Yue, Y.R., Lang, S., Flexeder, C.: Bayesian semiparametric additive quantile regression. Stat. Model. 13, 223–252 (2013)

    Article  MathSciNet  Google Scholar 

  • Yang, Y., Tokdar, S.T.: Joint estimation of quantile planes over arbitrary predictor spaces. J. Am. Stat. Assoc. 112, 1107–1120 (2017)

    Article  MathSciNet  Google Scholar 

  • Yu, K., Moyeed, R.: Bayesian quantile regression. Stat Probab Lett 54, 437–447 (2001)

    Article  MathSciNet  Google Scholar 

  • Yu, K., Zhang, J.: A three-parameter asymmetric laplace distribution and its extension. Commun Stat Theory Methods 34, 1867–1879 (2005)

    Article  MathSciNet  Google Scholar 

  • Yu, K., Lu, Z., Stander, J.: Quantile regression: applications and current research areas. J R Stat Soc Ser D (Stat) 53, 331–350 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5581 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, B., Kneib, T. Noncrossing structured additive multiple-output Bayesian quantile regression models. Stat Comput 30, 855–869 (2020). https://doi.org/10.1007/s11222-020-09925-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-020-09925-x

Keywords

Navigation