Skip to main content
Log in

The Influence of Substitution with Aluminum on the Field of Effective Magnetic Anisotropy and the Degree of Magnetic Texture of Anisotropic Polycrystalline Hexagonal Ferrites of Barium and Strontium for Substrates of Microstrip Devices of Microwave Electronics

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

This article discusses the influence of substitution with Al3+ ions on the field of the effective magnetic anisotropy HAeff and the degree of magnetic texture f of anisotropic polycrystalline hexagonal ferrites of barium and strontium. Sample batches are produced by ceramic technology, the texture is formed by compaction in a magnetic field. The preparation of test objects is described in detail. Batches of barium hexaferrites with an ion concentration of Al3+ 0.9, 1.4, 2.5, and 2.6 f.u. and batches of strontium hexaferrites with a concentration of 0.1 f.u. are synthesized. It is demonstrated that the applied procedure makes it possible to obtain barium and strontium hexaferrites with HAeff = 19–35 kE and f = 80–83%. The mentioned values of HAeff and f are sufficient for the production of substrates for microstrip UHV devices of the millimeter wave band. For the first time, it is detected that the degree of the magnetic texture of polycrystalline barium hexaferrites increases with the concentration of Al3+ ions; in addition, a moderate magnetic texture (5.5–5.8%) is observed in isotropic strontium hexaferrites. The experimental results are discussed. The formation mechanism of the magnetic texture in the considered hexaferrites during synthesis is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Shcherbakov, S.V., The development of microwave electronics in the framework of the implementation of state programs, in Materialy VI Vserossiiskoi nauchno-tekhnicheskoi konferentsii “Elektronika i mikroelektronika SVCh” (Proceedings of the 6th All-Russian Conference on Electronics and Microelectronics of Microwave), St. Petersburg: SPbGETU LETI, 2017, pp. 15–23.

  2. Maltsev, P. and Shakhnovich, I., The basis of future electronics. Trends and markets, Elektron.: Nauka, Tekhnol. Biznes, 2015, no. 8, pp. 72–84. http://www.electronics.ru/ files/article_pdf/4/article_4906_855.pdf.

  3. Harinskaya, M., Microwave ferrite materials. Well how can microwave devices do without them?, Elektron.: Nauka, Tekhnol. Biznes, 2000, no. 1, pp. 24–27. http://www.electronics.ru/files/article_pdf/1/article_ 1518_892.pdf.

  4. Letyuk, L.M., Kostishin, V.G., and Gonchar, A.V., Tekhnologiya ferritovykh materialov magnitoelektroniki (Technology of Ferrite Materials of Magnetoelectronics), Moscow: MISiS, 2005.

  5. Antsiferov, V.N., Letyuk, L.M., Andreev, V.G., Gonchar, A.V., Dubrov, A.N., Kostishyn, V.G., and Satin, A.I., Problemy poroshkovogo materialovedeniya. Chast’ V. Tekhnologiya proizvodstva poroshkovykh ferritovykh materialov (Problems of Powder Materials. Part V. The Technology of Production of Powdered Ferrite Materials), Ekaterinburg: Uro RAN, 2005.

  6. Yakovlev, Yu.M. and Gendelev, S.Sh., Monokristally ferritov v radioelektronike (Single Crystals of Ferrites in Radio Electronics), Moscow: Sov. Radio, 1975.

  7. Kostishin, V.G., Andreev, V.G., Chitanov, D.N., Nalogin, A.G., Ursulyak, N.D., Alekseev, A.A., Timofeev, A.V., and Adamtsev, A.Yu., Effects of base composition and dopants on the properties of hexagonal ferrites, Russ. J. Inorg. Chem., 2016, vol. 61, no. 3, pp. 279–283. https://doi.org/10.1134/S0036023616030116

    Article  Google Scholar 

  8. Trukhanov, A.V., Trukhanov, S.V., Kostishin, V.G., Panina, L.V., Salem, M.M., Kazakevich, I.S., Turchenko, V.A., Kochervinskii, V.V., and Krivchenya, D.A., Multiferroic properties and structural features of M-type Al-substituted barium hexaferrites, Phys. Solid State, 2017, vol. 59, no. 4, pp. 737–745. https://doi.org/10.1134/S1063783417040308

    Article  Google Scholar 

  9. Trukhanov, A.V., Trukhanov, S.V., Panina, L.V., Kostishyn, V.G., Kazakevich, I.S., Trukhanov, An.V., Trukhanova, E.L., Natarov, V.O., Turchenko, V.A., Salem, M.M., and Balagurov, A.M., Evolution of structure and magnetic properties for BaFe11.9Al0.1O19 hexaferrite in a wide temperature range, J. Magn. Magn. Mater., 2017, vol. 426, pp. 487–496. https://doi.org/10.1016/j.jmmm.2016.10.140

    Article  Google Scholar 

  10. Trukhanov, A.V., Trukhanov, S.V., Panina, L.V., Kostishyn, V.G., Chitanov, D.N., Kazakevich, I.S., Trukhanov, A.V., Turchenko, V.A., and Salem, M.M., Strong corelation between magnetic and electrical subsystems in diamagnetically substituted hexaferrites ceramics, Ceram. Int., 2017, vol. 43, no. 7, pp. 5635–5641. https://doi.org/10.1016/j.ceramint.2017.01.096

    Article  Google Scholar 

  11. Trukhanov, S.V., Trukhanov, A.V., Kostishyn, V.G., Panina, L.V., Turchenko, V.A., Kazakevich, I.S., Trukhanov, An.V., Trukhanova, E.L., Natarov, V.O., and Balagurov, A.M., Thermal evolution of exchange interactions in lightly doped barium hexaferrites, J. Magn. Magn. Mater., 2017, vol. 426, pp. 554–562. https://doi.org/10.1016/j.jmmm.2016.10.151

    Article  Google Scholar 

  12. Trukhanov, A.V., Trukhanov, S.V., Kostishyn, V.G., Panina, L.V., Korovushkin, V.V., Turchenko V. A, Vinnik, D.A., Yakovenko, E.S., Zagorodnii, V.V., Launetz, V.L., Oliynyk, V.V., Zubar, T.I., Tishkevich, D.I., and Trukhanova, E.L., Correlation of the atomic structure, magnetic properties and microwave characteristics in substituted hexagonal ferrites, J. Magn. Magn. Mater., 2018, vol. 462, pp. 127–135. https://doi.org/10.1016/j.jmmm.2018.05.006

    Article  Google Scholar 

  13. Trukhanov, A.V., Kostishyn, V.G., Panina, L.V., Korovushkin, V.V., Turchenko, V.A., Thakur, P., Thakur, A., Yang, Y., Vinnik, D.A., Yakovenko, E.S., Matzui, L.Yu., Trukhanova, E.L., and Trukhanov, S.V., Control of electromagnetic properties in substituted M-type hexagonal ferrites, J. Alloys Compd., 2018, vol. 754, pp. 247–256. https://doi.org/10.1016/j.jallcom.2018.04.150

    Article  Google Scholar 

  14. Trukhanov, A.V., Panina, L.V., Trukhanov, S.V., Kostishyn, V.G., Turchenko, V.A., Vinnik, D.A., Zubar, T.I., Yakovenko, E.S., Macuy, L.Yu., and Trukhanova, E.L., Critical influence of different diamagnetic ions on electromagnetic properties of BaFe12O19, Ceram. Int., 2018, vol. 44, no. 12, pp. 13520–13529. https://doi.org/10.1016/j.ceramint.2018.04.183

    Article  Google Scholar 

  15. Kostishyn, V., Korovushkin, V., Isaev, I., and Trukhanov, A., Study of the features of the magnetic and crystal structures of the BaFe12 – xAlxO19 and BaFe12 – xGaxO19 substituted hexagonal ferrites, East.-Eur. J. Enterprise Technol., 2017, vol. 1, no. 5, pp. 10–15. https://doi.org/10.15587/1729-4061.2017.91409

    Article  Google Scholar 

  16. Petrova, I.I., Analysis of the effect of diamagnetic and paramagnetic ions on the properties of hexaferrites, Elektron. Tekh., Ser. Mater., 1990, no. 4, pp. 28–32.

  17. Grigorieva, L.N. and Petrova, I.I., Properties of highly anisotropic M-type hexaferrites, Elektron. Tekh. Ser. Mater., 1991, no. 1, pp. 18–21.

  18. Chechernikov, V.I., Magnitnye izmereniya (Magnetic Measurements), Kondoroskii, E.I., Ed., Moscow: Mosk. Gos. Univ., 1969.

  19. Semenov, A.S., Semenov, M.G., Myasnikov, A.V., and Nalogin, A.G., Metrological support for the development of ferrite materials for the centimeter and millimeter wavelength ranges, in Materialy VI Vserossiiskoi nauchno-tekhnicheskoi konferentsii Elektronika i mikroelektronika SVCh (Proceedings of the 6th All-Russian Conference on Electronics and Microelectronics of Microwave), St. Petersburg: SPbGETU LETI, 2017, pp. 27–31.

  20. Rathenau, G.W., Smit, J., and Stuyts, A.L., Ferromagnetic properties of hexagonal iron-oxide compounds with and without a preferred orientation, Zeitschr. Phys., 1952, vol. 133, nos. 1–2, pp. 250–260. https://doi.org/10.1007/BF01948700

    Article  Google Scholar 

  21. Tokar, M., Increase in preferred orientation in lead ferrite by firing, J. Am. Cer. Soc., 1968, vol. 51, no. 10, p. 601. https://doi.org/10.1111/j.1151-2916.1968.tb13331.x

    Article  Google Scholar 

  22. Reed, J.S. and Fulrath, R.M., Characterization and sintering behavior of Ba and Sr ferrites, J. Am. Cer. Soc., 1973, vol. 56, no. 4, pp. 207–211. https://doi.org/10.1111/j.1151-2916.1973.tb12458.x

    Article  Google Scholar 

  23. Kaneva, I.I., Kostishin, V.G., Andreev, V.G., Chitanov, D.N., Nikolaev, A.N., and Kislyakova, E.I., Obtaining barium hexaferrite brand 7BI215 with isotropic properties, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh., 2014, no. 3, pp. 183–188. https://doi.org/10.17073/1609-3577-2014-3-183-188

  24. Isaev, I.M., Radiation-thermal sintering in a beam of fast electrons polycrystalline hexagonal ferrites BaFe12O19 and BaFe12 – x(Al,Ni,Ti,Mn)xO19 for permanent magnets and substrates of microstrip microwave electronics devices, Extended Abstract of Cand. Sci. Dissertation, Moscow, 2017.

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation, agreement no. 14.575.21.0030 dated June 27, 2014 (RFMEFI57514X0030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Kostishin.

Additional information

Translated by I. Moshkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbakov, S.V., Nalogin, A.G., Kostishin, V.G. et al. The Influence of Substitution with Aluminum on the Field of Effective Magnetic Anisotropy and the Degree of Magnetic Texture of Anisotropic Polycrystalline Hexagonal Ferrites of Barium and Strontium for Substrates of Microstrip Devices of Microwave Electronics. Russ Microelectron 48, 582–588 (2019). https://doi.org/10.1134/S1063739719080110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739719080110

Keywords:

Navigation