Skip to main content
Log in

Evaluation of Intellectual Property Objects in the Nanoindustry Field

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract—

The recently developed nanomaterials and their production technologies as intellectual property objects (IPOs) are considered. The role of the informational-analytical system of NUST MISiS “Intellectual Property: Protection and Commercialization” in the legal protection and commercialization of the results of scientific and technical activity is shown. One of the lines of activity of NUST MISiS is the fabrication of new nanomaterials and technologies for their production. For the purpose of commercializing new nanomaterials and their production technologies in NUST MISiS, the preliminary feasibility studies on individual projects were developed, the market value of IPOs was calculated, including their registration on the balance sheet of an institute of higher education for subsequent sale to potential investors. Students–economists take part in the development of feasibility studies and evaluation of the market value of new nanomaterials (as IPOs). This makes it possible based on using the institute of higher education internal capacity without additional funding to prepare the feasibility study of projects and evaluate the market value of IPOs, that is of the interest in the subject for potential investors. The advantages and disadvantages of different approaches in the evaluation of IPOs are considered. As an example of an IPO, in the field of nanoindustry, the development of a new technology for the synthesis of FeCo/C nanocomposite is discussed. The use of an FeCo/C metal–carbon nanocomposite is analyzed and the choice of the design solution for the nanocomposite production technology is justified. A feasibility study of the FeCo/C nanocomposite production project is undertaken and the market value of the developed technology is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Filonov, M.R., Kozhitov, L.V., Raikova, T.V., and Balykhin, M.G., Protection and commercialization of the results of intellectual activity in the mode of commercial secrecy, Vyssh. Obrazov. Segodnya, 2014, no. 1, pp. 32–40.

  2. Kozhitov, L.V. and Raikova, T.V., Protection of intellectual property—the basis of commercialization of scientific-technological activities, Innovatsii, 2011, no. 11, pp. 10–17.

  3. Kozhitov, L.V., Raikova, T.V., and Kosushkin, V.G., Know-how as a basis for the creation of a small innovative enterprise on FZ-217, Innovatsii, 2012, no. 7, pp. 13–19.

  4. Nanotekhnologii. Azbuka dlya vsekh (Nanotechnology. ABC for Everybody), Tret’yakov, Yu.D., Ed., Moscow: Fizmatlit, 2009.

  5. Kolokolov, A.S. and Shulgin, D.B., Methodological aspects of innovative projects at an early stage, Innovatsii, 2011, no. 3, pp. 96–101.

  6. Smolyak, S.A., Accounting for the specifics of investment projects in assessing their effectiveness, Audit Fin. Anal., 1999, no. 3. https://www.cfin.ru/press/afa/ 1999-3/05-6.shtml.

  7. Methodological recommendations for determining the market value of intellectual property. Ministry of Property Relations of the Russian Federation, no. SK-4/2197, 2002. http://www.consultant.ru/document/cons_doc_LAW_ 41415/.

  8. Okorokov, V.R. and Timofeeva, A.A., Principles and methods of the market cost estimation of the intellectual property objects in innovative economy, Innovatsii, 2011, no. 3, pp. 51–55.

  9. Inshakova, E.I. and Manyakin, M.A., Infrastructural support of the commercialization of intellectual property in the sphere of the nanoindustry of the Russian Federation, in IX Mezhdunarodnaya nauchno-prakticheskaya konferentsiya “Innovatsionnoye razvitiye rossiyskoy ekonomiki” (Proceedings of the 9th International Conference on Innovative Development of the Russian Economy), Moscow: REU im. G.V. Plekhanova, 2016, vol. 6, pp. 204–208.

  10. Inshakov, O.V., ‘Development Nucleus’ in the light of the new factors of production theory, Ekon. Nauka Sovrem. Ross., 2003, no. 1, pp. 11–25.

  11. Independent Expert Company Novotest, NSP presented a database on standards in the field of nanotechnology. http://www.novotest.ru/news/world/ nsp-predstavil-bazu-dannykh-po-standartam-v-oblasti-nanotekhnologiy/. Cited April 3, 2017.

  12. Elenova, Yu.A., Otsenka ob”ektov intellektual’noi sobstvennosti i nematerial’nykh aktivov (Evaluation of Intellectual Property and Intangible Assets), Moscow: MGTU Stankin, 2009.

  13. Lukicheva, L.I., Egorychev, D.N., Salikhov, M.R., and Egorychev, E.V., Management of the processes of commercialization and valuation of the intellectual capital of knowledge-intensive enterprises, Menedzhm. Ross. Rubezh., 2009, no. 4. http://www.mevriz.ru/articles/ 2009/4/5576.html.

  14. Diligenskii, N.V., Dymova, L.G., and Sevast’yanov, P.V., Nechetkoe modelirovanie i mnogokriterial’naya optimizatsiya proizvodstvennykh sistem v usloviyakh neopredelennosti: tekhnologiya, ekonomika, ekologiya (Fuzzy Modeling and Multi-Criteria Optimization of Production Systems in Conditions of Uncertainty: Technology, Economics, Ecology), Moscow: Mashinostroenie-1, 2004.

  15. Chernikova, A.A., Kozhitov, L.V., Lunev, A.P., and Balykhin, M.G., University entrance to the market of professional services for realization of its intellectual potential, Vyssh. Obrazov. Segodnya, 2014, no. 3, pp. 2–6.

  16. Chernikova, A.A., Kozhitov, L.V., Balykhin, M.G., and Verkhovich, V.S., The conclusion of the university on the market of professional business services, Vyssh. Obrazov. Segodnya, 2014, no. 3, pp. 32–36.

  17. Chernikova, A.A., Kozhitov, L.V., Kosushkin, V.G., Liev, A.A., Verhovich, V.S., and Bebenin, V.G., The role of cross-functional teams of high school in the formation competencies of graduates, in Perspektivnye tekhnologii, oborudovanie i analiticheskie sistemy dlya materialovedeniya i nanomaterialov. Trudy XI Mezhdunarodnoi konferentsii (Proceedings of the 11th International Conference on Advanced Technologies, Equipment and Analytical Systems for Materials Science and Nanomaterials), Kursk: Yugo-Zap. Gos. Univ., 2014, pp. 403–410.

  18. Chernikova, A.A., Kozhitov, L.V., Bebenin, M.G., and Verkhovich, V.S., Audit of the results of scientific and technical activities of the university—the foundation for the success of the commercialization of technology, in Perspektivnye tekhnologii, oborudovanie i analiticheskie sistemy dlya materialovedeniya i nanomaterialov. Trudy XI Mezhdunarodnoi konferentsii (Proceedings of the 11th International Conference on Advanced Technologies, Equipment and Analytical Systems for Materials Science and Nanomaterials), Kursk: Yugo-Zap. Gos. Univ., 2014, pp. 438–443.

  19. Chernikova, A.A., Kozhitov, L.V., Kosushkin, V.G., and Verkhovich, V.S., Innovators’ preparation in universities, Innovatsii, 2013, no. 7, pp. 74–85.

  20. Kiselev, B.G. and Kozhitov, L.V., Problems of commercialization of intellectual property objects, Tsvetn. Met., 2004, no. 11, pp. 15–19.

  21. Kiselev, B.G., Kozhitov, L.V., Kozlov, V.V., and Ponomaryov, M.V., Technical and economic substantiation and determination of marketable cost of the production technology of metallocarbonic nanocomposites, Tsvetn. Met., 2010, no. 3, pp. 15–20.

  22. Kiselev, B.G., Kozhitov, L.V., Kozlov, V.V., and Eltsina, I.V., Feasibility study of the composite with silver nanoparticles production technology and determination of its market value, Tsvetn. Met., 2011, no. 7, pp. 6–10.

  23. Kiselev, B.G., Kozhitov, L.V., Kozlov, V.V., Yeltsina, I.V., and Kostikova, A.V., Nanotechnology market: prospects and restrictions, Tsvetn. Met., 2011, no. 11, pp. 6–10.

  24. Kiselev, B.G., Kostikova, A.V., Popkova, A.V., Kozlov, V.V., and Sadykova, A.R., The feasibility study and determination of the commercial cost for the technology of manufacturing of metal-carbon nanocomposite FeNi3/C, Tsvetn. Met., 2013, no. 3, pp. 6–10.

  25. Kiselev, B.G., Kozhitov, L.V., Muratov, D.G., Savkina, A.V., and Popkova, A.V., Technical and economic substantiation of production of FeCo/C nanocomposite and assessment of market value of technology, Tsvetn. Met., 2014, no. 3, pp. 6–9.

  26. Kozhitov, L.V., Muratov, D.G., Kostishin, V.G., Popkova, A.V., and Yakushko, E.V., Method for the synthesis of a metal-carbon nanocomposite FeCo/C, RF Patent no. 2552454, 2013.

  27. Kozhitov, L.V., Kostikova, A.V., and Kozlov, V.V., Method for obtaining nanocomposite FeNi3/pyrolyzed polyacrylonitrile, RF Patent no. 2455225, 2012.

  28. Kozhitov, L.V., Muratov, D.G., Kostishin, V.G., Yakushko, E.V., Savienko, A.G., Shchetinin, I.V., and Popkova, A.V., Method for obtaining nanocomposite FeNi3/C on an industrial scale, RF Patent no. 2593145 2016.

  29. Link, S. and El-Sayed, M.A., Optical properties and ultrafast dynamics of metallic nanocrystals, Ann. Rev. Phys. Chem., 2003, vol. 54, pp. 331–366. https://doi.org/10.1146/annurev.physchem.54.011002.103759

    Article  Google Scholar 

  30. Lu, A.-N., Salabas, E.L., and Schuth, F., Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed., 2007, vol. 46, no. 8, pp. 1222–1244. https://doi.org/10.1002/anie.200602866

    Article  Google Scholar 

  31. Braun, E., Eichen, Y., Sivan, U., and Ben-Yoseph, G., DNA-templated assembly and electrode attachment of a conducting silver wire, Nature (London, U.K.), 1998, vol. 391, pp. 775–778. https://doi.org/10.1038/35826

    Article  Google Scholar 

  32. Narayanan, R. and El-Sayed, M.A., Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability, J. Phys. Chem. B, 2005, vol. 109, no. 26, pp. 12663–12676. https://doi.org/10.1021/jp051066p

    Article  Google Scholar 

  33. Toshima, N. and Yonezawa, T., Bimetallic nanoparticles novel materials for chemical and physical applications, New J. Chem., 1998, vol. 22, no. 11, pp. 1179–1201. https://doi.org/10.1039/A805753B

    Article  Google Scholar 

  34. Luo, X.L., Morrin, A., Killard, A.I., and Smyth, M.R., Application of nanoparticles in electrochemical sensors and biosensors, Electroanalysis, 2006, vol. 18, no. 4, pp. 319–326. https://doi.org/10.1002/elan.200503415

    Article  Google Scholar 

  35. Hisada, D., Fujiwara, Y., Sato, H., Jimbo, M., Kobayashi, T., and Hata, K., Structure and magnetic properties of FeCo nanoparticles encapsulated in carbon nanotubes grown by microwave plasma enhanced chemical vapor deposition, J. Magn. Magn. Mater., 2011, vol. 323, no. 24, pp. 3184–3188. https://doi.org/10.1016/j.jmmm.2011.06.029

    Article  Google Scholar 

  36. Zehani, K., Bez, R., Boutahar, A., Hlil, E.K., Lassri, H., Moscovici, J., Mliki, N., and Bessais, L., Structural, magnetic, and electronic properties of high moment FeCo nanoparticles, J. Alloys Compd., 2014, vol. 591, pp. 58–64. https://doi.org/10.1016/j.jallcom.2013.11.208

    Article  Google Scholar 

  37. Arruebo, M., Fernández-Pacheco, R., Ibarra, M.R., and Santamaria, J., Magnetic nanoparticles for drug delivery, Nano Today, 2007, vol. 2, no. 3, pp. 22–32. https://doi.org/10.1016/S1748-0132(07)70084-1

    Article  Google Scholar 

  38. Miller, K.J., Colletti, A., Papi, P.J., and McHenry, M.E., Fe–Co–Cr nanocomposites for application in self-regulated rf heating, J. Appl. Phys., 2010, vol. 107, no. 9, pp. 09A313. https://doi.org/10.1063/1.3349043

  39. Habib, A.H., Ondeck, C.L., Chaudhary, P., Bockstaller, M.R., and McHenry, M.E., Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy, J. Appl. Phys., 2008, vol. 103, no. 7, p. 07A307. https://doi.org/10.1063/1.2830975

  40. Hütten, A., Sudfeld, D., Ennen, I., Reiss, G., Wojczykowski, K., and Jutzi, P., Ferromagnetic FeCo nanoparticles for biotechnology, J. Magn. Magn. Mater., 2005, vol. 293, no. 1, pp. 93–101. https://doi.org/10.1016/j.jmmm.2005.01.048

    Article  Google Scholar 

  41. Kline, T.L., Xu Y.-H., Jing, Y., and Wang J.-P., Biocompatible high-moment FeCo-Au magnetic nanoparticles for magnetic hyperthermia treatment optimization, J. Magn. Magn. Mater., 2009, vol. 321, no. 10, pp. 1525–1528. https://doi.org/10.1016/j.jmmm.2009.02.079

    Article  Google Scholar 

  42. Hütten, A., Sudfeld, D., Ennen, I., Reiss, G., Hachmann, W., Heinzmann, U., Wojczykowski, K., Jutzi, P., Saikaly, W., and Thomas, G., New magnetic nanoparticles for biotechnology, J. Biotechnol., 2004, vol. 112, nos. 1–2, pp. 47–63. https://doi.org/10.1016/j.jbiotec.2004.04.019

    Article  Google Scholar 

  43. Reiss, G. and Hütten, A., Magnetic nanoparticles: applications beyond data storage, Nat. Mater., 2005, vol. 4, pp. 725–726. https://doi.org/10.1038/nmat1494

    Article  Google Scholar 

  44. Koike, M., Hisada, Y., Wang, L., Li, D., Watanade, H., Nakagawa, Y., and Tomishige, K., High catalytic activity of Co-Fe/α-Al2O3 in the steam reforming of toluene in the presence of hydrogen, Appl. Catal. B: Environ., 2013, vols. 140–141, pp. 652–662. https://doi.org/10.1016/j.apcatb.2013.04.065

    Article  Google Scholar 

  45. Qiu, F.Y., Wang, Y.J., Wang, Y.P., Li, L., Liu, G., Yan, C., Jiao, L.F., and Yuan, H.T., Dehydrogenation of ammonia borane catalyzed by in situ synthesized Fe–Co nano-alloy in aqueous solution, Catal. Today, 2011, vol. 170, no. 1, pp. 64–68. https://doi.org/10.1016/j.cattod.2011.02.026

    Article  Google Scholar 

  46. Wang, L., Hisada, Y., Koike, M., Li, D., Watanabe, H., Nakagawa, Y., and Tomishige, K., Catalyst property of Co–Fe alloy particles in the steam reforming of biomass tar and toluene, Appl. Catal. B: Environ., 2012, vols. 121–122, pp. 95–104. https://doi.org/10.1016/j.apcatb.2012.03.025

    Article  Google Scholar 

  47. Von Neida, A.R., and Chin, G.Y., Rolling-induced magnetic anisotropy in a Co–10% Fe alloy, J. Appl. Phys., 1965, vol. 36, no. 3, pp. 1231–1232. https://doi.org/10.1063/1.1714182

    Article  Google Scholar 

  48. Parhofer, S., Kuhrt, C., Wecker, J., Gieres, G., and Schultz, L., Magnetic properties and growth texture of high-coercive Nd–Fe–B thin films, J. Appl. Phys., 1998, vol. 83, no. 5, p. 2735. https://doi.org/10.1063/1.366635

    Article  Google Scholar 

  49. Hasegawa, D., Yang, H., Ogawa, T., and Takahashi, M., Challenge of ultra high frequency limit of permeability for magnetic nanoparticle assembly with organic polymer – application of superparamagnetism, J. Magn. Magn. Mater., 2009, vol. 321, no. 7, pp. 746–749. https://doi.org/10.1016/j.jmmm.2008.11.041

    Article  Google Scholar 

  50. Yang, H.T., Hasegawa, D., Takahashi, M., and Ogawa, T., Achieving a noninteracting magnetic nanoparticle system through direct control of interparticle spacing, Appl. Phys. Lett., 2009, vol. 94, no. 1, p. 013103. https://doi.org/10.1063/1.3063032

    Article  Google Scholar 

  51. Tang, Y.J., Parker, F.T., Harper, H., Berkowitz, A.E., Jiang, Q., Smith, D.J., Brand, M., and Wang, F., Co50Fe50 fine particles for power frequency applications, IEEE Trans. Magn., 2004, vol. 40, no. 4II, pp. 2002–2004. https://doi.org/10.1109/TMAG.2004.832505

    Article  Google Scholar 

  52. Choi, J.S., Lee, J.H., Shin, T.H., Song, H.-T., Kim, E.Y., and Cheon, J., Self-confirming ‘AND’ logic nanoparticles for fault-free MRI, J. Am. Chem. Soc., 2010, vol. 132, no. 32, pp. 11015–11017. https://doi.org/10.1021/ja104503g

    Article  Google Scholar 

  53. Seo, W.S., Lee, J.H., Sun, X.M., Suzuki, Y., Mann, D., Liu, Z., Terashima, M., Yang, P.C., McConnell, M.V., Nishimura, D.G., and Dai, H., FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents, Nat. Mater., 2006, vol. 5, pp. 971–976. https://doi.org/10.1038/nmat1775

    Article  Google Scholar 

  54. Yong Yang, Cailing Xu, Yongxin Xia, Tao Wang, and Fashen Li, Synthesis and microwave absorption properties of FeCo nanoplates, J. Alloys Compd., 2010, vol. 493, nos. 1–2, pp. 549–552. https://doi.org/10.1016/j.jallcom.2009.12.153

    Article  Google Scholar 

  55. Yang, Y., Xu, C.L., Xia, Y.X., Wang, T., and Li, F.S., Synthesis and microwave absorption properties of FeCo nanoplates, J. Alloys Compd., 2010, vol. 493, nos. 1–2, pp. 549–552. https://doi.org/10.1016/j.jallcom.2009.12.153

    Article  Google Scholar 

  56. Chen Wang, Ruitao Lv, Feiyu Kang, Jialin Gu, Xuchun Gui, and Dehai Wu, Synthesis and application of iron-filled carbon nanotubes coated with FeCo alloy nanoparticles, J. Magn. Magn. Mater., 2009, vol. 321, no. 13, pp. 1924–1927. https://doi.org/10.1016/j.jmmm.2008.12.013

    Article  Google Scholar 

  57. Mercier, D., Lévy J.-C., S., Viau, G., Fiévet-Vincent, F., Fiévet, F., Toneguzzo, P., and Acher, O., Magnetic resonance in spherical Co Ni and FeCoNi particles, Phys. Rev. B, 2000, vol. 62, no. 1, pp. 532–544. https://doi.org/10.1103/PhysRevB.62.532

    Article  Google Scholar 

  58. Lv, R., Kang, F., Gu, J., Gui, X., Wei, J., Wang, K., and Wu, D., Carbon nanotubes filled with ferromagnetic alloy nanowires: lightweight and wide-band microwave absorber, Appl. Phys. Lett., 2008, vol. 93, no. 22, p. 223105. https://doi.org/10.1063/1.3042099

    Article  Google Scholar 

  59. Liu, X.G., Geng, D.Y., Meng, H., Lil, B., Zhang, Q., Kang, D.J., and Zhang, Z.D., Electromagnetic-wave-absorption properties of wire-like structures self-assembled by FeCo nanocapsules, J. Phys. D: Appl. Phys., 2008, vol. 41, no. 17, p. 175001. https://doi.org/10.1088/0022-3727/41/17/175001

    Article  Google Scholar 

  60. Snyder, R.L., Nguyen, V.Q., and Ramanujan, R.V., Design parameters for magneto-elastic soft actuators, Smart Mater. Struct., 2010, vol. 19, no. 5, p. 055017. https://doi.org/10.1088/0964-1726/19/5/055017

    Article  Google Scholar 

  61. Da Jeong Kim, Mou Pal, and Won Seok Seo, Confined growth of highly uniform and single bcc-phased FeCo/graphitic-shell nanocrystals in SBA-15, Microporous Mesoporous Mater., 2013, vol. 180, pp. 32–39. https://doi.org/10.1016/j.micromeso.2013.06.006

    Article  Google Scholar 

  62. Xu, M.H., Zhong, W., Wang, Z.H., Chaktong Au, and Du, Y.W., Highly stable FeCo/carbon composites: magnetic properties and microwave response, Phys. E (Amsterdam, Neth.), 2013, vol. 52, pp. 14–20. https://doi.org/10.1016/j.physe.2013.03.032

    Google Scholar 

  63. Chen Wang, Ruitao Lv, Zhenghong Huang, Feiyu Kang, and Jialin Gu, Synthesis and microwave absorbing properties of FeCo alloy particles/graphite nanoflake composites, J. Alloys Compd., 2011, vol. 509, no. 2, pp. 494–498. https://doi.org/10.1016/j.jallcom.2010.09.078

    Article  Google Scholar 

  64. Kozitov, L.V., Kostikova, A.V., Kozlov, V.V., and Bulatov, M.F., The FeNi3/C nanocomposite formation from the composite of Fe and Ni salts and polyacrylonitrile under IR-heating, J. Nanoelectron. Optoelectron., 2012, vol. 7, no. 4, pp. 419–422. https://doi.org/10.1166/jno.2012.1322

    Article  Google Scholar 

  65. Zemtsov, L.M., Karpacheva, G.P., Efimov, M.N., Muratov, D.G., and Bagdasarova, K.A., Carbon nanostructures based on IR-pyrolyzed polyacrylonitrile, Polym. Sci. Ser., A., 2006, vol. 48, no. 6, pp. 633–637. https://doi.org/10.1134/S0965545X06060125

    Article  Google Scholar 

  66. Karpacheva, G.P., Bagdasarova, K.A., Bondarenko G.N., Zemtsov, L.M., Muratov, D.G., and Perov, N.S., Co-carbon nanocomposites based on IR-pyrolyzed polyacrylonitrile, Polym. Sci., Ser. A, 2009, vol. 51, nos. 11–12, pp. 1297–1302. https://doi.org/10.1134/S0965545X09110157

    Article  Google Scholar 

  67. Dzidziguri, L.E., Zemtsov, L.M., Karpacheva, G.P., Muratov, D.G., and Sidorova, E.N., Preparation and structure of metal-carbon nanocomposites Cu–C, Nanotechnol. Russ., 2010, vol. 5, nos. 9–10, pp. 665–668. https://doi.org/10.1134/S1995078010090119

    Article  Google Scholar 

  68. Efimov, M.N., Dzidziguri, E.L., Sidorova, E.N., Zemtsov, L.M., and Karpacheva, G.P., Phase formation in nanocomposites of the C–Pd–Fe system, Russ. J. Phys. Chem. A, 2011, vol. 85, no. 4, pp. 660–662. https://doi.org/10.1134/S0036024411040091

    Article  Google Scholar 

  69. Dzidziguri, E.L., Muratov, D.G., Zemtsov, L.M., Karpacheva, G.P., and Sidorova, E.N., Formation of bimetal nanoparticles in the structure of C-Cu-Zn metal-carbon nanocomposite, Nanotechnol. Russ., 2012, vol. 7, nos. 1–2, pp. 62–66. https://doi.org/10.1134/S1995078012010041

    Article  Google Scholar 

  70. Muratov, D.G., Kozitov, L.V., and Popkova, A.V., Polyacrylonitrile-based FeCo/C nanocomposites: preparation and magnetic properties, Russ. J. Inorg. Chem., 2016, vol. 61, no. 10, pp. 1312–1320. https://doi.org/10.1134/S0036023616100168

    Article  Google Scholar 

  71. Kozitov, L.V., Bulatov, M.F., Muratov, D.G., Kuzmenko, A.P., and Popkova, A.V., The formation of nanocomposites FeCo/C of different phase composition on based on polyacrylonitrile, J. Nanoelectron. Optoelectron., 2014, vol. 9, no. 6, pp. 823–827. https://doi.org/10.1166/jno.2014.1681

    Article  Google Scholar 

  72. Bulatov, M.F., Kozitov, L.V., Muratov, D.G., Karpacheva, G.P., and Popkova, A.V., The magnetic properties of nanocomposites FeCo/C based on polyacrilonitril, J. Nanoelectron. Optoelectron., 2015, vol. 9, no. 6, pp. 828–833. https://doi.org/10.1166/jno.2014.1682

    Article  Google Scholar 

Download references

Funding

The work was performed as part of the state task no. 11.8411.2017/8.9 of the Ministry of Education and Science for NUST MISiS and scholarship MK-2483.2019.3 of the President of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Kozhitov.

Additional information

Translated by M. Kromin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozhitov, L.V., Kiselev, B.G., Raykova, T.B. et al. Evaluation of Intellectual Property Objects in the Nanoindustry Field. Russ Microelectron 48, 599–612 (2019). https://doi.org/10.1134/S1063739719080080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739719080080

Keywords:

Navigation