Skip to main content
Log in

Influence of Woody Species on Aboveground Biomass Production and Quality of Two Perennial Grasses in Semi-arid Rangelands of Central Argentina

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

Woody species can exert positive, neutral or negative influence on the growth of neighbouring grass species. The objective of this work was to assess the impact of woody species (Prosopis caldenia and Larrea divaricata) on aboveground biomass production and quality of perennial grasses (Piptochaetium napostaense and Nassella clarazii). Overall, aboveground biomass production of P. napostaense was higher in the area of influence of L. divaricata while that of N. clarazii was higher in the area of influence of P. caldenia. In general, P. napostaense showed higher, while N. clarazii showed lower, values of aboveground biomass production when beneath the canopy of each woody species. At the end of the vegetative growing period, crude protein content (CP) of grass species was lower beneath the canopy of woody species than in open areas; the only exception being N. clarazii in the area of influence of P. caldenia where no differences were found. No differences were found in CP content between any of the experimental locations at the end of the reproductive growing period. In general, in vitro digestibility was lower within the area of influence of P. caldenia than of L. divaricata for both growing periods. The results of the present study suggest that the impact of woody species on aboveground biomass production and quality are species-specific in semi-arid rangelands of central Argentina and highlight the need of further research in order to prescribe sound and generalized shrub management policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Armas, C. and Pugnaire, F.I., Plant interactions govern population dynamics in a semi-arid plant community, J. Ecol., 2005, vol. 93, no. 5, 978–989. https://doi.org/10.1111/j.1365-2745.2005.01033.x

    Article  Google Scholar 

  2. Collins, S.L., Interaction of disturbances in tallgrass prairie: A field experiment, Ecology, 1987, vol. 68, no. 5, pp. 1243–1250. https://doi.org/10.2307/1939208

    Article  Google Scholar 

  3. Bedunah, D.J. and Sosebee, R.E., Forage response of a mesquite–buffalograss community following range rehabilitation, J. Range Manag., 1984, vol. 37, no. 6, pp. 483–487.

    Article  Google Scholar 

  4. McPherson, G.R. and Wright, H.A., Effects of cattle grazing and Juniperus pinchotii canopy cover on herb cover and production in western Texas, Am. Midl. Nat., 1990, vol. 123, no. 1, pp. 144–151. https://doi.org/10.2307/2425767

    Article  Google Scholar 

  5. Belsky, A.J., Amundson, R.G., Duxbury, J.M., Riha, S.J., Ali, A.R., and Mwonga, S.M., The effects of trees on their physical, chemical and biological environments in a semi-arid savanna in Kenya, J. Appl. Ecol., 1989, vol. 26, no. 3, pp. 1005–1024. https://doi.org/10.2307/2403708

    Article  Google Scholar 

  6. Belsky, A.J., Mwonga, S.M., Amundson, R.G., Duxbury, J.M., and Ali, A.R., Comparative effects of isolated trees on their undercanopy environments in high-and low-rainfall savannas, J. Appl. Ecol., 1993, vol. 30, no. 1, pp. 143–155. https://doi.org/10.2307/2404278

    Article  Google Scholar 

  7. Laxson, J.D., Schacht, W.H., and Owens, M.K., Above-ground biomass yields at different densities of honey mesquite, J. Range Manag., 1997, vol. 50, no. 5, pp. 550–554.

    Article  Google Scholar 

  8. Miller, R.F., Svejcar, T.J., and Rose, J A., Impacts of western juniper on plant community composition and structure, J. Range Manag., 2000, vol. 53, no. 6, pp. 574–585. https://doi.org/10.2307/4003150

    Article  Google Scholar 

  9. Kahi, H.C., Ngugi, R.K., Mureithi, S.M., and Ngethe, J.C., The canopy effects of Prosopis juliflora (D.C.) and Acacia tortilis (Hayne) trees on herbaceous plants species and soil physico-chemical properties in Njemps flats, Kenya, Tropical and Subtropical Agroecosystems, 2009, vol. 10, no. 3, pp. 441–449.

    Google Scholar 

  10. Anderson, L.J., Brumbaugh, M.S., and Jackson, R.B., Water and tree–understory interactions: A natural experiment in a savanna with oak wilt, Ecology, 2001, vol. 82, no. 1, pp. 33–49. https://doi.org/10.2307/2680084

    Article  Google Scholar 

  11. Belsky, A.J., Influences of trees on savanna productivity: Tests of shade, nutrients, and tree–grass competition, Ecology, 1994, vol. 75, no. 4, pp. 922–932. https://doi.org/10.2307/1939416

    Article  Google Scholar 

  12. Bunce, J.A., Responses of stomatal conductance to light, humidity, and temperature in winter wheat and barley grown at three concentrations of carbon dioxide in the field, Glob. Change Biol., 2000, vol. 6, pp. 371–382. https://doi.org/10.1046/j.1365-2486.2000.00314.x

    Article  Google Scholar 

  13. Berry, J. and Björkman, O., Photosynthetic response and adaptation to temperature in higher plants, Annu. Rev. Plant Physiol., 1980, vol. 31, pp. 491–543.

    Article  Google Scholar 

  14. Callaway, R.M., and King, L., Temperature-driven variation in substrate oxygenation and the balance of competition and facilitation, Ecology, 1996, vol. 77, no. 4, pp. 1189–1195. https://doi.org/10.2307/2265588

    Article  Google Scholar 

  15. Callaway, R.M., Are positive interactions species-specific?, Oikos, 1998, vol. 82, no. 1, pp. 202–207.

    Article  Google Scholar 

  16. McNaughton, S.J., Oesterheld, M., Frank, D.A., and Williams, K.J., Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats, Nature, 1989, vol. 341, pp. 142–144. https://doi.org/10.1038/341142a0

    Article  CAS  PubMed  Google Scholar 

  17. Walter, H., and Mueller-Dombois, D., Ecology of Tropical and Subtropical Vegetation (no. 581.5264 W3), Burnett, J.H., Ed., Edinburgh: Oliver and Boyd, 1971.

    Google Scholar 

  18. Walker, B.H., Structure and function of savannas: An overview, in Ecology and Management of the World’s Savannas, Tothill, J.C. and Mott, J.J., Eds., Canberra: Australian Academy of Science, 1980, pp. 83–91.

    Google Scholar 

  19. Peláez, D.V., Distel, R.A., Bóo, R.M., Elía O.R., and Mayor M.D., Water relations between shrubs and grasses in semi-arid Argentina. J. Arid Environ., 1994, vol. 27, no. 1, pp. 71–78. https://doi.org/10.1006/jare.1994.1046

    Article  Google Scholar 

  20. Rodríguez, M.V., Bertiller, M.B., and Bisigato, A., Are fine roots of both shrubs and perennial grasses able to occupy the upper soil layer? A case study in the arid Patagonian Monte with non-seasonal precipitation, Plant Soil, 2007, vol. 300, nos. 1–2, pp. 281–288. https://doi.org/10.1007/s11104-007-9415-1

    Article  CAS  Google Scholar 

  21. Cruz, P., Effect of shade on the growth and mineral nutrition of a C4 perennial grass under field conditions, Plant Soil, 1997, vol. 188, no. 2, pp. 227–237. Dawson, T.E., Hydraulic lift and water use by plants: Implications for water balance, performance and plant-plant interactions, Oecologia, 1993, vol. 95, no. 4, pp. 565–574. https://doi.org/10.1007/BF00317442 https://doi.org/10.1023/A:1004296622463

  22. Ludwig, F., de Kroon, H., Berendse, F., and Prins, H.H., The influence of savanna trees on nutrient, water and light availability and the understorey vegetation, Plant Ecol, 2004, vol. 170, no. 1, pp. 93–105. https://doi.org/10.1023/B:VEGE.0000019023.29636.92

    Article  Google Scholar 

  23. Treydte, A.C., Heitkönig, I.M.A., Prins, H.H.T., and Ludwig, F., Trees enhance grass layer quality in African savannas of distinct rainfall and soil fertility, Perspect. Plant Ecol. Evol. Syst., 2007, vol. 8, pp. 197–205.

    Article  Google Scholar 

  24. Luken, J.O., and Fonda, R.W., Nitrogen accumulation in a chronosequence of red alder communities along the Hoh River, Olympic National Park, Washington, Can. J. For. Res., 1983, vol. 13, no. 6, pp. 1228–1237. https://doi.org/10.1139/x06-180

    Article  CAS  Google Scholar 

  25. Jackson, J., and Ash, A.J., Tree–grass relationships in open eucalypt woodlands of northeastern Australia: Influence of trees on pasture productivity, forage quality and species distribution, Agroforestry Systems, 1998, vol. 40, no. 2, pp. 159–176. https://doi.org/10.1023/A:1006067110870

    Article  Google Scholar 

  26. Bóo, R.M., Peláez, D.V., Bunting, S.C., Elía, O.R., and Mayor, M.D., Effect of fire on grasses in central semi-arid Argentina, J. Arid Environ., 1996, vol. 32, no. 3, pp. 259–269. https://doi.org/10.1006/jare.1996.0022

    Article  Google Scholar 

  27. Moretto, A.S., and Distel, R.A., Competitive interactions between palatable and unpalatable grasses native to a temperate semi-arid grassland of Argentina, Plant Ecol., 1997, vol. 130, no. 2, pp. 155–161. https://doi.org/10.1023/A:1009723009012

    Article  Google Scholar 

  28. Peláez, D.V., Bóo, R.M., Mayor, M.D., and Elía, O.R., Effect of fire on perennial grasses in central semiarid Argentina, J. Range Manag., 2001, vol. 54, no. 5, pp. 617–621. https://doi.org/10.2307/4003593

    Article  Google Scholar 

  29. Peláez, D.V., Bóo, R.M., Elía, O.R., and Mayor, M.D., Effect of fire on growth of three perennial grasses from central semi-arid Argentina. J. Arid Environ., 2003, vol. 55, no. 4, pp. 657–673. https://doi.org/10.1016/S0140-1963(02)00287-2

    Article  Google Scholar 

  30. Inventario Integrado de los Recursos Naturales de la Provincia de La Pampa, Buenos Aires, Argentina: Instituto Nacional de Tecnología Agropecuaria, 1980.

  31. Servicios climáticos: Clima en Argentina, Servicio Meteorológico Nacional, 2013. www.smn.gov.ar/serviciosclimaticos/?mod=elclima&id=72.

  32. Sánchez, J.P. and Lazzari, M.A., Impact of fire on soil nitrogen forms in central semiarid Argentina. Arid Soil Res. Rehab., 1999, vol. 13, no. 1, pp. 81–90. https://doi.org/10.1080/089030699263519

    Article  Google Scholar 

  33. Blazquez, F R., Peláez, D.V., Andrioli, R.J., and Elia, O.R., Influence of woody species on aerial growth of perennial grasses in semi-arid rangelands of central Argentina. PHYTON-Int.J. Exp. Bot., 2014, vol. 83, pp. 397–405.

    Google Scholar 

  34. Distel, R.A. and Bóo, R.M., Vegetation states and transitions in temperate semiarid rangelands of Argentina, in Rangelands in a Sustainable Biosphere, West, N., Ed., Denver, CO: Society for Range Management, 1996, pp. 117–118.

    Google Scholar 

  35. Distel, R.A. and Peláez, D.V., Fenología de algunas especies del Distrito del Caldén (Prosopis caldenia Burk.), Instituto Nacional de Tecnología Agropecuaria IDIA Sept.–Dec., 1985, pp. 35–40.

  36. Bóo, R.M. and Peláez, D.V., Ordenamiento and clasificación de la vegetación en un área del sur del Distrito del Caldén, Boletín de la Sociedad Argentina de Botánica, 1991, vol. 27, pp. 135–141.

    Google Scholar 

  37. Bontti, E.E., Boo, R.M., Lindström, L.I., and Elia, O.R., Botanical composition of cattle and vizcacha diets in central Argentina, J. Range Manag., 1999, vol. 52, no. 4, pp. 370–377.

    Article  Google Scholar 

  38. Bóo, R.M., Lindström, L.I., Elia, O.R., and Mayor, M.D., Botanical composition and seasonal trends of cattle diets in central Argentina, J. Range Manag., 1993, vol. 46, no. 6, pp. 479–482.

    Article  Google Scholar 

  39. Pisani, J.M., Distel, R.A., and Bontti, E.E., Diet selection by goats on a semi-arid shrubland in central Argentina, Ecol. Austral., 2000, vol. 10, vol. 1, pp. 103–108.

  40. Goering, H.K. and Van Soest, P.J., Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications), ARS/USDA Handbook no. 379, Washington, DC: US Government Printing Office, 1970.

  41. Official Methods of Analysis, vol. 534, Horwitz, W., Ed., Arlington, VA, Washington, DC: Association of Official Analytical Chemists, 1980.

    Google Scholar 

  42. Snedecor, G.W. and Cochran, W.G., Statistical Methods, 7th ed., Ames, IA: Iowa State Univ. Press, 1980.

    Google Scholar 

  43. Harrington, G.N. and John, G.G., Herbaceous biomass in a Eucalyptus savanna woodland after removing trees and/or shrubs, J. Appl. Ecol., 1990, vol. 27, no. 3, pp. 775–787. https://doi.org/10.2307/2404376

    Article  Google Scholar 

  44. Kinyamario, J.I., Trlica, M.J., and Njoka, T.J., Influence of tree shade on plant water status, gas exchange, and water use efficiency of Panicum maximum Jacq. and Themeda triandra Forsk. in a Kenya savanna, Afr. J. Ecol., 1995, vol. 33, no. 2, pp. 114–123. https://doi.org/10.1111/j.1365-2028.1995.tb00787.x

    Article  Google Scholar 

  45. Vetaas, O.R., Microsite effects of trees and shrubs in dry savannas, J. Veget. Sci., 1992, vol. 3, no. 3, pp. 337–344. https://doi.org/10.2307/3235758

    Article  Google Scholar 

  46. Blazquez, F.R., Influencia de las especies leñosas sobre la productividad, la calidad and el crecimiento aéreo de gramíneas perennes nativas del sur del Caldenal, Tesis Doctoral, Universidad Nacional del Sur, 2017.

  47. McDaniel, K.C., Pieper, R.D., and Donart, G.B., Grass response following thinning of broom snakeweed, J. Range Manag., 1982, vol. 35, no. 2, pp. 219–222. https://doi.org/10.2307/3898395

    Article  Google Scholar 

  48. Pugnaire, F.I., Haase, P., Puigdefábregas, J., Cueto, M., Clark, S.C., and Incoll, L.D., Facilitation and succession under the canopy of a leguminous shrub, Retama sphaerocarpa, in a semi-arid environment in south-east Spain, Oikos, 1996, vol. 76, no. 3, pp. 455–464. https://doi.org/10.2307/3546339

    Article  Google Scholar 

  49. Dawson, T.E., Hydraulic lift and water use by plants: Implications for water balance, performance and plant-plant interactions, Oecologia, 1993, vol. 95, no. 4, pp. 565–574.

    Article  Google Scholar 

  50. Scholes, R.J., and Archer, S.R., Tree–grass interactions in savannas, Annu. Rev. Ecol. Syst., 1997, vol. 28, pp. 517–544. https://doi.org/10.1146/annurev.ecolsys.28.1.517

    Article  Google Scholar 

  51. Heitschmidt, R.K., Gordon, R.A., Dowhower, S.L., and Price, D.L., Response of vegetation to livestock grazing at the Texas Experimental Ranch, Bull. Texas Agric. Exp. Station, no. 1515, 1986.

  52. Pieper, R.D., Overstory–understory relations in pinyon–juniper woodlands in New Mexico, J. Range Manag., 1990, vol. 43, no. 5, pp. 413–415.

    Article  Google Scholar 

  53. Walker, B.H., Ludwig, D., Holling, C.S., and Peterman, R.M., Stability of semi-arid savanna grazing systems, J. Ecol., 1981, vol. 69, no. 2, pp. 473–498. https://doi.org/10.2307/2259679

    Article  Google Scholar 

  54. Berger, L.L., Fahey, G.C., Jr., Bourquin, L.D., and Titgemeyer, E.C., Modification of forage quality after harvest, in National Conference on Forage Quality, Evaluation, and Utilization (University of Nebraska, 1994), American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 1994, pp. 922–966.

  55. McDonald, P., Edwards, R.A., Greenhalgh, J.F.D., and Morgan, C.A., Animal Nutrition, Addison Wesley Longman, 1995.

    Google Scholar 

  56. East, R.M., and Felker, P., Forage production and quality of 4 perennial grasses grown under and outside canopies of mature Prosopis glandulosa Torr. var. glandulosa (mesquite), Agrofor. Syst., 1993, vol. 22, no. 2, pp. 91–110. https://doi.org/10.1007/BF00705139

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was funded by Universidad Nacional del Sur (UNS), and Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romina Jessica Andrioli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blazquez Francisco Rubén, Peláez, D.V., Andrioli, R.J. et al. Influence of Woody Species on Aboveground Biomass Production and Quality of Two Perennial Grasses in Semi-arid Rangelands of Central Argentina. Russ J Ecol 51, 90–98 (2020). https://doi.org/10.1134/S1067413620010105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413620010105

Keywords:

Navigation