Skip to main content
Log in

Gaussian Fluctuations and Moderate Deviations of Eigenvalues in Unitary Invariant Ensembles

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We study the limiting behavior of the k-th eigenvalue \(x_k\) of unitary invariant ensembles with Freud-type and uniform convex potentials. As both k and \(n-k\) tend to infinity, we obtain Gaussian fluctuations for \(x_k\) in the bulk and soft edge cases, respectively. Multi-dimensional central limit theorems, as well as moderate deviations, are also proved. This work generalizes earlier results in the GUE and unitary invariant ensembles with monomial potentials of even degree. In particular, we obtain the precise asymptotics of corresponding Christoffel–Darboux kernels as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourgade, P., Erdös, L., Yau, H.T.: Edge universality of beta ensembles. Commun. Math. Phys. 332(1), 261–353 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Breuer, J., Duits, M.: The Nevai condition and a local law of large numbers for orthogonal polynomial ensembles. Adv. Math. 265, 441–484 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Costin, O., Lebowitz, J.L.: Gaussian fluctuation in random matrices. Phys. Rev. Lett. 75(1), 69–72 (1995)

    Article  MathSciNet  Google Scholar 

  4. Chan, T.: The Wigner semi-circle law and eigenvalues of matrix-valued diffusions. Probab. Theory Relat. Fields 93(2), 249–272 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Deift, P.: Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lecture Notes in Mathematics 3. Courant Institute of Mathematical Science, New York (1999)

  6. Deift, P., Gioev, D.: Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices. Commun. Pure Appl. Math. 60(6), 867–910 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R., Venakides, S., Zhou, X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Commun. Pure Appl. Math. 52(11), 1335–1425 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R., Venakides, S., Zhou, X.: Strong asymptotics of orthogonal polynomials with respect to exponential weights. Commun. Pure Appl. Math. 52(12), 1491–1552 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R., Venakides, S., Zhou, X.: A Riemann–Hilbert approach to asymptotic questions for orthogonal polynomials. J. Comput. Appl. Math. 133(1–2), 47–63 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deift, P., Venakides, S., Zhou, X.: New results in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems. Int. Math. Res. Not. 6, 286–299 (1997)

    Article  MathSciNet  Google Scholar 

  11. Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. 137(2), 295–368 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dembo, A., Guionnet, A., Zeitouni, O.: Moderate deviations for the spectral measure of certain random matrices. Ann. Inst. H. Poincaré Probab. Stat. 39(6), 1013–1042 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dembo, A., Zeitouni, O.: Large deviations techniques and applications. Corrected reprint of the second (1998) edition. Stochastic Modelling and Applied Probability, 38. Springer-Verlag, Berlin (2010). xvi+396 pp

  14. Döring, H., Eichelsbacher, P.: Moderate deviations via cumulants. J. Theor. Probab. 26(2), 360–385 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Döring, H., Eichelsbacher, P.: Moderate deviations for the eigenvalue counting function of Wigner matrices. ALEA Lat. Am. J. Probab. Math. Stat. 10(1), 27–44 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Döring, H., Eichelsbacher, P.: Edge fluctuations of eigenvalues of Wigner matrices. High dimensional probability VI, pp. 261–275, Progr. Probab., 66, Birkhäuser/Springer, Basel (2013)

    Chapter  Google Scholar 

  17. Erdös, L.: Universality for Random Matrices and Log-Gases. Current Developments in Mathematics, pp. 59–132. International Press, Somerville (2013)

    MATH  Google Scholar 

  18. Fokas, A.S., Its, A.R., Kitaev, A.V.: Discrete Painlevé equations and their appearance in quantum gravity. Commun. Math. Phys. 142(2), 313–344 (1991)

    Article  MATH  Google Scholar 

  19. Forrester, P.J.: Log-Gases and Random Matrices. London Mathematical Society Monographs Series, 34. Princeton University Press, Princeton (2010)

  20. Gustavsson, J.: Gaussian fluctuations of eigenvalues in the GUE. Ann. Inst. H. Poincaré Probab. Stat. 41(2), 151–178 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Johansson, K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91(1), 151–204 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, S.Z., Li, X.D., Xie, Y.X.: Generalized Dyson Brownian motion, Mckean–Vlasov equation and eigenvalues of random matrices (2013). arXiv:1303.1240v1

  23. Lubinsky, D.S.: Gaussian fluctuations of eigenvalues of random Hermitian matrices associated with fixed and varying weights. Random Matrices Theory Appl. 5(3), 1650009, 31 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. O’Rourke, S.: Gaussian fluctuations of eigenvalues in Wigner random matrices. J. Stat. Phys. 138(6), 1045–1066 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pastur, L., Shcherbina, M.: On the edge universality of the local eigenvalue statistics of matrix models. Mat. Fiz. Anal. Geom. 10(3), 335–365 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Rogers, L.C.G., Shi, Z.: Interacting Brownian particles and the Wigner law. Probab. Theory Relat. Fields 95(4), 555–570 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shcherbina, M.: Edge universality for orthogonal ensembles of random matrices. J. Stat. Phys. 136(1), 35–50 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Soshnikov, A.: Gaussian fluctuation for the number of particles in Airy, Bessel, sine, and other determinantal random point fields. J. Stat. Phys. 100(3–4), 491–522 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Soshnikov, A.: Gaussian limit for determinantal random point fields. Ann. Probab. 30(1), 171–187 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Su, Z.G.: Gaussian fluctuations in complex sample covariance matrices. Electron. J. Probab. 11(48), 1284–1320 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tao, T., Vu, V.: Random matrices: universality of local eigenvalue statistics. Acta Math. 206(1), 127–204 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tracy, C., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159(1), 151–174 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, D.: Random matrices, stochastic nonlinear Schrödinger equations (in Chinese). Ph.D. thesis, Chinese Academy of Sciences (2014)

  34. Zhang, D.: Gaussian fluctuations of eigenvalues in log-gas ensemble: bulk case I. Acta Math. Sin. (Engl. Ser.) 31(9), 1487–1500 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, D.: Tridiagonal random matrix: Gaussian fluctuations and deviations. J. Theor. Probab. 30(3), 1076–1103 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to Prof. Xiang-Dong Li for valuable discussions and Prof. Zhonggen Su for nice lectures at AMSS in Beijing in 2011 when this work was initiated. The author would also like to thank the two referees for valuable comments to improve this paper. In particular, I would like to thank one referee for pointing out the reference [2]. Financial support by the NSFC (No. 11871337) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 2.3

First, using Theorem 2.2, we have for all \(n\ge N\) and \(x\in [-1+\delta ,1-\delta ]\),

$$\begin{aligned} \rho _{V_n}^{-1}(x)=2\pi \frac{1}{\sqrt{1-x^2}}\frac{1}{h_n(x)}<\frac{2\pi }{h_0} \frac{1}{\sqrt{1-(1-\delta )^2}} <\infty . \end{aligned}$$

As regards \(\rho '_V\), we have

$$\begin{aligned} 2\pi |\rho '_{V_n}|\le \frac{|x|}{\sqrt{1-x^2}}|h_n(x)|+\sqrt{1-x^2}|h_n'(x)|. \end{aligned}$$
(7.1)

Note that by (2.2) and (2.4),

$$\begin{aligned} h_n(x)&=\sum _{k=0}^{m-1}2\frac{A_{m-k-1}}{A_m}x^{2k}+\mathcal {O}\left( n^{-\frac{1}{2m}}\right) , \end{aligned}$$
(7.2)
$$\begin{aligned} h'_n(x)&=\sum _{k=0}^{m-1}4k\frac{A_{m-k-1}}{A_m}x^{2k-1} +\mathcal {O}\left( n^{-\frac{1}{2m}}\right) , \end{aligned}$$
(7.3)

which implies that \(|h_n(x)|\) and \(|h'_n(x)|\) are uniformly bounded for all \(n\ge N\) and \(x\in [-1+\delta ,1-\delta ]\), thereby completing the proof. \(\square \)

Proof of (3.11)

First consider \(x,y \in (1-\delta ,1)\). As in the case where \(x,y\in (-1+\delta , 1-\delta )\), (3.7) still holds, i.e.,

$$\begin{aligned} 2\pi i(x-y)\mathscr {K}_n(x,y) =(e^{-n\varphi _n(x)},e^{n\varphi _n(x)})S(x)^TS(y)^{-T}(-e^{n\varphi _n(y)},e^{-n\varphi _n(y)})^T. \end{aligned}$$
(7.4)

Since for \(x\in (1-\delta ,1)\), \(f_n(x+i\epsilon )\) lies in the region II in (2.24), taking \(\epsilon \rightarrow 0\) we obtain

$$\begin{aligned} \Psi ^{\sigma }(f_n(x))=[AI(f_n(x))]e^{-\frac{\pi i}{6}\sigma _3}\left( \begin{array}{cc} 1 &{} 0 \\ -1 &{} 1 \\ \end{array} \right) , \end{aligned}$$

which along with (2.26) and (2.23) yields that

$$\begin{aligned} S=RE_n[AI(f_n)]e^{-\frac{\pi i}{6}\sigma _3}\left( \begin{array}{cc} 1 &{} 0 \\ -1 &{} 1 \\ \end{array} \right) e^{n\varphi _n\sigma _3}. \end{aligned}$$
(7.5)

Consequently, plugging (7.5) into (7.4), we obtain (3.11) for \(x,y\in (1-\delta ,1)\).

Regarding the case where \(x,y\in (1,1+\delta )\), by (2.14), (2.15), (2.16) and (3.5),

$$\begin{aligned} U=e^{n\frac{l_n}{2}\sigma _3}Se^{n\left( g_n-\frac{l_n}{2}\right) \sigma _3}, \end{aligned}$$

and

$$\begin{aligned} 2\pi i(x-y)\mathscr {K}_n(x,y) =(e^{-n\varphi _n(x)},0)S^T(x)S^{-T}(y)(0,e^{-n\varphi _n(y)})^T. \end{aligned}$$
(7.6)

Since for \(x\in (1,1+\delta )\), \(f_n(x+i\epsilon )\) is in the region I in (2.24), by (2.26) and (2.23),

$$\begin{aligned} S=RE_n[AI(f_n)]e^{-\frac{\pi i}{6}\sigma _3}e^{n\varphi _n\sigma _3}. \end{aligned}$$
(7.7)

Hence, combining (7.6) and (7.7) we get (3.11) for \(x,y\in (1,1+\delta )\), thereby completing the proof of (3.11). \(\square \)

Proof of (3.14)

We first show that \(I_2(x,y) = {\mathcal {O}}(n^{-\frac{5}{6}})\). Indeed, by (3.13), expressions of AI, \(E_n\) and that \(\det [AI(z)]= \frac{-1}{2\pi i} e^{-\frac{\pi i}{3}}\) (see [6, p. 890]),

$$\begin{aligned} I_2(x,y)&=-2\pi i e^{\frac{\pi i}{3}}(H_n(x)Ai(f_n(x)),H_n^{-1}(x)Ai'(f_n(x)))\left( \begin{array}{cc} 1 &{} -1 \\ -i &{} -i \\ \end{array} \right) ^T\\&\cdot \Delta _{R}(x,y)R^{-T}(y)\left( \begin{array}{cc} 1 &{} -1 \\ -i &{} -i \\ \end{array} \right) ^{-T}\\&\quad \times (-H_n^{-1}(y)Ai'(f_n(y)),H_n(y)Ai(f_n(y)))^T. \end{aligned}$$

Note that since \(H_n=f_n^{\frac{1}{4}}a^{-1}\), by (2.19),

$$\begin{aligned} H_n=n^{\frac{1}{6}}(x-1)^{\frac{1}{4}}(\widehat{\phi }_n)^{\frac{1}{6}} \left( \frac{x-1}{x+1}\right) ^{-\frac{1}{4}} =n^{\frac{1}{6}}(x+1)^{\frac{1}{4}}(\widehat{\phi }_n)^{\frac{1}{6}} =\mathcal {O}\left( n^{\frac{1}{6}}\right) . \end{aligned}$$

Moreover, for \(x\in \mathbb {R}\), \(|Ai(x)|=\mathcal {O}(1)\) and \(|Ai'(f_n(x))|=\mathcal {O}(|f_n(x)|^{\frac{1}{4}})=\mathcal {O}(n^{\frac{1}{6}})\), and by (2.29), \(\Delta {R}(x,y)R^{-T}(y)=\mathcal {O}(n^{-1})\). Thus, we conclude that \(I_2(x,y)\) is of order \(\mathcal {O}(n^{\frac{1}{6}})\mathcal {O}(n^{-1})=\mathcal {O}(n^{-\frac{5}{6}})\).

It remains to check the first term on the right-hand side of (3.12). To this end, it follows from (3.12) and the computations as above that

$$\begin{aligned}&e^{-\frac{\pi i}{3}}(1,0)[AI(f_n(x))]^TE_n^T(x)E_n^{-T}(y)[AI(f_n(y))]^{-T}(0,1)^T\\&\quad =(-2\pi i)\left[ -Ai(f_n(x))Ai'(f_n(y))\frac{f_n^{\frac{1}{4}}(x)}{f_n^{\frac{1}{4}}(y)}\frac{a(y)}{a(x)} +Ai'(f_n(x))Ai(f_n(y))\frac{f_n^{\frac{1}{4}}(y)}{f_n^{\frac{1}{4}}(x)}\frac{a(x)}{a(y)}\right] . \end{aligned}$$

which yields the first term on the right-hand side of (3.14). \(\square \)

Proof of (3.15)

The proofs are similar to those of (3.11). First consider \(x,y\in (-1,-1+\delta )\). As in the case where \(x,y\in (1-\delta ,1)\), we have

$$\begin{aligned} 2\pi i(x-y)\mathscr {K}_n(x,y) =(e^{-n\varphi _n(x)},e^{n\varphi _n(x)})S(x)^TS(y)^{-T}(-e^{n\varphi _n(y)},e^{-n\varphi _n(y)})^T. \end{aligned}$$
(7.8)

Since for \(x\in (-1,-1+\delta )\), \(-\widetilde{f}_n(x+i\epsilon )\) lies in the region III in (2.24), letting \(\epsilon \rightarrow 0\) we have

$$\begin{aligned} \widetilde{\Psi }^{\sigma }(-\widetilde{f}_n(x))=[\widetilde{AI}(-\widetilde{f}_n(x))]e^{-\frac{\pi i}{6}\sigma _3}\left( \begin{array}{cc} 1 &{} 0 \\ 1 &{} 1 \\ \end{array} \right) , \end{aligned}$$

which along with (2.26) and (2.25) yields

$$\begin{aligned} S=R\widetilde{E}_n\sigma _3[\widetilde{AI}(-\widetilde{f}_n)]e^{-\frac{\pi i}{6}\sigma _3}\left( \begin{array}{cc} 1 &{} 0 \\ 1 &{} 1 \\ \end{array} \right) \sigma _3e^{n\widetilde{\varphi }_n\sigma _3}. \end{aligned}$$
(7.9)

Thus, plugging (7.9) into (7.8), since \(\widetilde{\varphi }_n(z)=\varphi _n(z)+\pi i\), \(z\in \mathbb {C}^+\), we get (3.15).

Regarding the case where \(x,y\in (-1-\delta ,-1)\). As in the case where \(x,y\in (1,1+\delta )\) in the proof of (3.11), we have

$$\begin{aligned} 2\pi i(x-y)\mathscr {K}_n(x,y)=(e^{-n\varphi _n(x)},0)S^T(x)S^{-T}(y)(0,e^{-n\varphi _n(y)})^T. \end{aligned}$$
(7.10)

Since for \(x\in (-1-\delta ,-1)\), \(-\widetilde{f}_n(x+i\epsilon )\) is in the region IV in (2.24), taking \({\varepsilon }\rightarrow 0\), we obtain from (2.25) and (2.26) that

$$\begin{aligned} S=R\widetilde{E}_n\sigma _3 [\widetilde{AI}(-\widetilde{f}_n)] e^{-\frac{\pi i}{6}\sigma _3}\sigma _3e^{n\widetilde{\varphi }_n\sigma _3}. \end{aligned}$$
(7.11)

Therefore, plugging (7.11) into (7.10) yields (3.15). \(\square \)

Proof of Lemma 6.1

Define the Hilbert transform \(\mathscr {H}\) and the Borel transform \(\mathscr {B}\) by

$$\begin{aligned} \mathscr {H} \rho _V(x)&=\frac{1}{\pi }P.V.\int \frac{\rho _V(y)}{x-y}\mathrm{d}y,\\ \mathscr {B}\rho _V(z)&=\frac{1}{\pi i}\int \frac{\rho _V(s)}{s-z}\mathrm{d}s, \ \ z\in \mathbb {C}/\mathbb {R}. \end{aligned}$$

In view of [7, (3.10), (3.12)], for \(x\in \mathbb {R}\) we have

$$\begin{aligned} (\mathscr {B}\rho _V)_{\pm }(x)&=\pm \rho _V(x)+i\mathscr {H} \rho _V(x)=\pm \rho _V(x)-\frac{1}{2\pi i}V'(x). \end{aligned}$$

Moreover, by virtue of [7, (3.17), (3.18)],

$$\begin{aligned} \mathscr {B}\rho _V(z)=-\frac{1}{2\pi i}V'(z)-\frac{\sqrt{R(z)}}{4\pi ^2 }\oint \limits _{\Gamma _z}\frac{V'(s)}{\sqrt{R(s)}}\frac{\mathrm{d}s}{s-z}, \end{aligned}$$

where \(\sqrt{R(z)}\) is as in Sect. 6, and \(\Gamma _z\) is a counterclockwise contour with z and \([-1,1]\) in its interior. Note that due to the analytic branch of \(\sqrt{R(z)}\), we have

$$\begin{aligned} (\sqrt{R(x)})_+=i\sqrt{(x+1)(1-x)}=-(\sqrt{R(x)})_-. \end{aligned}$$
(7.12)

Hence, it follows that for \(x\in (-1,1)\),

$$\begin{aligned} \rho _V(x)=\frac{1}{2\pi }\sqrt{(1-x)(x+1)} \left( \frac{1}{2\pi i}\oint \limits _{\Gamma _z}\frac{V'(s)}{\sqrt{R(s)}}\frac{\mathrm{d}s}{s-z}\right) _+ , \end{aligned}$$

and so

$$\begin{aligned} h(z)=\frac{1}{2\pi i}\oint \limits _{\Gamma _z}\frac{V'(s)}{\sqrt{R(s)}}\frac{\mathrm{d}s}{s-z}, \end{aligned}$$
(7.13)

which is an analytic function.

It remains to prove that for some \(c>0\), \(h(x)\ge c\)\(\forall x\in \mathbb {R}\). We first claim that

$$\begin{aligned} \frac{1}{2\pi i}\oint \limits _{\Gamma _z}\frac{1}{\sqrt{R(s)}}\frac{\mathrm{d}s}{s-z}\equiv 0 \end{aligned}$$
(7.14)

To this end, we have for r large enough that

$$\begin{aligned} \frac{1}{2\pi i}\oint \limits _{\Gamma _z}\frac{1}{\sqrt{R(s)}}\frac{\mathrm{d}s}{s-z}&=\frac{1}{2\pi i}\oint \limits _{|s|=r}\frac{1}{\sqrt{(s+1)(s-1)}}\frac{\mathrm{d}s}{s-z}. \end{aligned}$$
(7.15)

Using Taylor’s extension, we see that

$$\begin{aligned} \frac{1}{\sqrt{s^2-1}}\frac{1}{s-z} =\left( A_0\frac{1}{s}+A_1\frac{1}{s^3}+A_2\frac{1}{s^5}+\cdots \right) \left( \frac{1}{s}+\frac{z}{s^2}+\frac{z^2}{s^3}+\cdots \right) , \end{aligned}$$

which by Cauchy’s theorem implies that the right-hand side of (7.15) equals to the coefficient of \(\frac{1}{s}\) which is exactly zero, thereby yielding (7.14), as claimed.

Now, it follows from (7.13) and (7.14) that

$$\begin{aligned} h(z) =\frac{1}{2\pi i}\oint \limits _{\Gamma _z}\frac{V'(s)-V'(z)}{s-z}\frac{1}{\sqrt{R(s)}}\mathrm{d}s =\frac{1}{2\pi i}\oint \limits _{\Gamma _1}\frac{V'(s)-V'(z)}{s-z}\frac{1}{\sqrt{R(s)}}\mathrm{d}s, \end{aligned}$$
(7.16)

where \(\Gamma _1\) is a counterclockwise contour with \([-1,1]\), but not z, in the interior.

Therefore, in view of (7.16) we have that for \(x\in (-1,1)\),

$$\begin{aligned} h(x)&=\lim \limits _{z\in \mathbb {C}^+\rightarrow x}h(z) =\frac{1}{\pi i}\int _1^{-1}\frac{V'(s)-V'(x)}{s-x}\frac{1}{(\sqrt{R(s)})_+}\mathrm{d}s \\&= \frac{1}{\pi } \int _{-1}^1\frac{V'(s)-V'(x)}{s-x}\frac{1}{\sqrt{(s+1)(1-s)}}\mathrm{d}s, \end{aligned}$$

which implies by the mean value theorem and the uniform convexity of V that

$$\begin{aligned} h(x) =\frac{1}{\pi }\int _{-1}^1\frac{V''(\xi )}{\sqrt{(s+1)(1-s)}}\mathrm{d}s \ge \frac{c}{\pi }\int _{-1}^1\frac{\mathrm{d}s}{\sqrt{(s+1)(1-s)}}&=c>0. \end{aligned}$$

where \(\xi \in (-1,1)\). The proof is complete. \(\square \)

Before proving Lemma 6.4, we recall that

Theorem 7.1

([7, (1.62)–(1.64)]) Consider the uniform convex potential as in (1.4). For the leading coefficients of orthogonal polynomials, we have

$$\begin{aligned} (\gamma _{n-1}^{(n)})^2&=e^{-nl}\left[ \frac{1}{4\pi } + \mathcal {O}(n^{-1})\right] , \ (\gamma _{n}^{(n)})^{-2}=e^{nl} \left[ \pi + \mathcal {O}(n^{-1})\right] , \\ \frac{\gamma _{n-1}^{(n)}}{\gamma _{n}^{(n)}}&=\frac{1}{2}+\mathcal {O}(n^{-1/2}). \end{aligned}$$

Theorem 7.2

([7, Theorems 1.1–1.3]) Consider the uniform convex potential as in (1.4). For the monic polynomials, we have

(i). For \(x\in \mathbb {R}/(-1-\delta ,1+\delta )\),

$$\begin{aligned} \pi _n(x;n)&=e^{ng(x)}\left( M_1(x)+\mathcal {O}(n^{-1})\right) , \end{aligned}$$
(7.17)
$$\begin{aligned} -2\pi i(\gamma _{n-1}^{(n)})^2\pi _{n-1}(x;n)&=e^{n(g(x)-l)}\left( M_2(x)+\mathcal {O}(n^{-1})\right) , \end{aligned}$$
(7.18)

where \(M_1=\frac{a+a ^{-1}}{2}\), \(M_2=\frac{a^{-1}-a}{2i}\) with a as in (2.28) and l is as in (1.7).

(ii). For \(x\in (-1+\delta ,1-\delta )\),

$$\begin{aligned} \pi _n(x;n)&=2e^{\frac{n}{2}(V(x)+l)}\left[ \hbox {Re}(M_1e^{i\pi n F(x)})+\mathcal {O}(n^{-1})\right] , \end{aligned}$$
(7.19)
$$\begin{aligned} -2\pi i(\gamma _{n-1}^{(n)})^2\pi _{n-1}(x;n)&=2e^{\frac{n}{2}(V(x)-l)} \left[ \hbox {Im}(M_2e^{i\pi n F(x)})+\mathcal {O}(n^{-1})\right] , \end{aligned}$$
(7.20)

where F is as in (6.2).

(iii). For \(x\in (1-\delta ,1)\cup (-1,-1+\delta )\),

$$\begin{aligned} \pi _n(x;n)&=\left( e^{\frac{nl}{2}\sigma _3} (I+\mathcal {O}(n^{-1}))M_pe^{n\left( g(x)-\frac{l}{2}\right) \sigma _3}\left( \begin{array}{cc} 1 &{} 0 \\ e^{nV} &{} 1 \\ \end{array} \right) \right) _{11}, \end{aligned}$$
(7.21)
$$\begin{aligned} -2\pi i(\gamma _{n-1}^{(n)})^2\pi _{n-1}(x;n)&=\left( e^{\frac{nl}{2}\sigma _3}(1+\mathcal {O}(n^{-1}))M_pe^{n\left( g(x) -\frac{l}{2}\right) \sigma _3}\left( \begin{array}{cc} 1 &{} 0 \\ e^{nV} &{} 1 \\ \end{array} \right) \right) _{21}, \end{aligned}$$
(7.22)

and for \(x\in (1,1+\delta )\cup (-1-\delta ,-1)\),

$$\begin{aligned} \pi _n(x;n)&=\left( (I+\mathcal {O}(n^{-1}))M_p\right) _{11}e^{ng(x) }, \end{aligned}$$
(7.23)
$$\begin{aligned} -2\pi i(\gamma _{n-1}^{(n)})^2\pi _{n-1}(x;n)&=\left( (I+\mathcal {O}(n^{-1}))M_p\right) _{21}e^{n(g(x)-l)}, \end{aligned}$$
(7.24)

Proof of Lemma 6.4

We first note that by the analytic branch of \(R^{1/2}(z)\),

$$\begin{aligned} (z-1)^{\frac{1}{2}}=i(1-z)^{\frac{1}{2}},~(z+1)^{\frac{1}{2}}=i(-1-z)^{\frac{1}{2}}, \ z\in \mathbb {C}_+. \end{aligned}$$

Then, using (6.5) we have

$$\begin{aligned} G(x)&=-\int _1^x\sqrt{(s-1)(s+1)}h(s)\mathrm{d}s=-2 \pi F(x), \ \ x>1, \end{aligned}$$
(7.25)
$$\begin{aligned} G(x)&=2\pi i F(x), \ \ x\in (-1,1), \end{aligned}$$
(7.26)
$$\begin{aligned} G(x)&=- 2\pi \widetilde{F}(x)+2\pi i, \ \ x<-1, \end{aligned}$$
(7.27)

where F(x) and \(\widetilde{F}(x)\) are as in (6.2).

(i). For \(x\in \mathbb {R}/(-1-\delta ,1+\delta )\), by (7.17) and (6.6),

$$\begin{aligned} \pi _n(x;n)=e^{\frac{n}{2}(V+l+G)}\left\{ \frac{1}{2} \left[ \left( \frac{x+1}{x-1}\right) ^{\frac{1}{4}} +\left( \frac{x-1}{x+1}\right) ^{\frac{1}{4}}\right] +\mathcal {O}(n^{-1})\right\} . \end{aligned}$$

Then, by Theorem 7.1,

$$\begin{aligned} p_n(x;n)=\gamma _n^{(n)}\pi _n(x;n)=\frac{1}{\sqrt{\pi }}e^{\frac{n}{2}(V+G)} \left\{ \frac{1}{2}\left[ \left( \frac{x+1}{x-1}\right) ^{\frac{1}{4}} +\left( \frac{x-1}{x+1}\right) ^{\frac{1}{4}}\right] +\mathcal {O}(n^{-1})\right\} . \end{aligned}$$

Thus, using (7.25) and (7.27) for \(x > 1+\delta \) and \(x< -1-\delta \), respectively, we obtain (6.26) and (6.28).

Similarly, by Theorem 7.1, (7.18) and (6.6),

$$\begin{aligned} p_{n-1}(x;n)e^{-\frac{n}{2}V}&=\frac{1}{\sqrt{4 \pi }} e^{\frac{ n G}{2}} \left\{ \left[ \left( \frac{x+1}{x-1}\right) ^{\frac{1}{4}}-\left( \frac{x-1}{x+1}\right) ^{\frac{1}{4}}\right] +\mathcal {O}(n^{-1})\right\} , \end{aligned}$$

which yields (6.27) and (6.29) by (7.25) and (7.27), respectively.

(ii). By the definitions of \(M_1\) and \(M_2\), we have that (cf. [8, (8.33), (8.34)])

$$\begin{aligned} M_1&=\frac{a+a^{-1}}{2}=\frac{\sqrt{2}}{2}\frac{1}{(1-x)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}e^{-\frac{i}{2}\arcsin x}\\ M_2&=\frac{a^{-1}-a}{2i}=-\frac{\sqrt{2}}{2}\frac{1}{(1-x)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}e^{\frac{i}{2}\arcsin x}. \end{aligned}$$

Then, in view of Theorems 7.1 and 7.2 (ii), we obtain (6.30) and (6.31).

(iii). We consider four cases \((iii.1)--(iii.4)\).

(iii.1). For \(x\in (1-\delta ,1)\), by (6.18) and (6.6),

$$\begin{aligned} e^{\frac{nl}{2}\sigma _3}M_pe^{n\left( g-\frac{l}{2}\right) \sigma _3}\left( \begin{array}{cc} 1 &{} 0 \\ e^{nV} &{} 1 \\ \end{array} \right) =e^{\frac{nl}{2}\sigma _3}\widehat{E}_n \left[ AI(\Phi _1)\right] e^{-\frac{i\pi }{6}\sigma _3}e^{\frac{n}{2}V\sigma _3}. \end{aligned}$$

Then, since \(\widehat{E}_n=\sqrt{\pi } e^{\frac{\pi i}{6}}\left( \begin{array}{cc} a^{-1}\Phi _1^{\frac{1}{4}} &{} -a\Phi _1^{-\frac{1}{4}} \\ -ia^{-1}\Phi _1^{\frac{1}{4}} &{} -ia\Phi _1^{-\frac{1}{4}} \\ \end{array} \right) \), direct calculations show that

$$\begin{aligned}&\left( e^{\frac{nl}{2}\sigma _3}M_pe^{n\left( g-\frac{l}{2}\right) \sigma _3}\left( \begin{array}{cc} 1 &{} o \\ e^{nV} &{} 1 \\ \end{array} \right) \right) _{11}\nonumber \\&\quad =\sqrt{\pi }e^{\frac{n}{2}(V+l)} \left[ a^{-1}\Phi _1^{\frac{1}{4}}Ai(\Phi _1)-a\Phi _1^{-\frac{1}{4}}Ai'(\Phi _1)\right] . \end{aligned}$$
(7.28)

Similarly,

$$\begin{aligned}&\left( e^{\frac{nl}{2}\sigma _3}M_pe^{n\left( g-\frac{l}{2}\right) \sigma _3}\left( \begin{array}{cc} 1 &{} o \\ e^{nV} &{} 1 \\ \end{array} \right) \right) _{21}\nonumber \\&\quad =(-i) \sqrt{\pi }e^{\frac{n}{2}(V-l)} \left[ a^{-1}\Phi _1^{\frac{1}{4}}Ai(\Phi _1)+a\Phi _1^{-\frac{1}{4}}Ai'(\Phi _1)\right] . \end{aligned}$$
(7.29)

Plugging these into (7.21) and (7.22) and using Theorem 7.1, we obtain (6.32) and (6.33).

(iii.2). For \(x\in (1,1+\delta )\), using (6.20) we note that in (7.23) and (7.24), \((M_p)_{11}e^{ng}\) and \((M_p)_{21}e^{n(g-l)}\) have the same formulations as (7.28) and (7.29). Thus, arguing as above we obtain (6.32) and (6.33).

(iii.3). For \(x\in (-1,-1+\delta )\), it follows from (6.22) that

$$\begin{aligned} e^{\frac{nl}{2}\sigma _3} M_p e^{n\left( g-\frac{l}{2}\right) \sigma _3}\left( \begin{array}{cc} 1 &{} 0 \\ e^{nV} &{} 1 \\ \end{array} \right) =(-1)^n e^{\frac{nl}{2}\sigma _3} \widehat{\widetilde{E}}_n \sigma _3 [\widetilde{AI}(\Phi _{-1})] e^{-\frac{\pi i}{6}\sigma _3} e^{\frac{n}{2}V\sigma _3} \sigma _3. \end{aligned}$$

Then, since \(\widehat{\widetilde{E}}_n =\sqrt{\pi } e^{\frac{\pi i}{6}}\left( \begin{array}{cc} a\Phi _{-1}^{\frac{1}{4}} &{} a^{-1}\Phi _{-1}^{-\frac{1}{4}} \\ ia\Phi _{-1}^{\frac{1}{4}} &{} -ia^{-1}\Phi _{-1}^{-\frac{1}{4}} \\ \end{array} \right) \), we have

$$\begin{aligned}&\left( e^{\frac{nl}{2}\sigma _3} M_p e^{n\left( g-\frac{l}{2}\right) \sigma _3}\left( \begin{array}{cc} 1 &{} 0 \\ e^{nV} &{} 1 \\ \end{array} \right) \right) _{11} \nonumber \\&\quad =(-1)^n \sqrt{\pi } e^{\frac{n(V+l)}{2}} \left[ a \Phi _{-1}^{\frac{1}{4}} Ai(\Phi _{-1}) - a^{-1} \Phi _{-1}^{-\frac{1}{4}} Ai'(\Phi _{-1})\right] . \end{aligned}$$
(7.30)

Similarly,

$$\begin{aligned}&\left( e^{\frac{nl}{2}\sigma _3} M_p e^{n\left( g-\frac{l}{2}\right) \sigma _3}\left( \begin{array}{cc} 1 &{} 0 \\ e^{nV} &{} 1 \\ \end{array} \right) \right) _{21}\nonumber \\&\quad =(-1)^{n+1} (-i) \sqrt{\pi } e^{\frac{n(V-l)}{2}} \left[ a \Phi _{-1}^{\frac{1}{4}} Ai(\Phi _{-1}) + a^{-1} \Phi _{-1}^{-\frac{1}{4}} Ai'(\Phi _{-1})\right] . \end{aligned}$$
(7.31)

Thus, (6.34) and (6.35) follow from (7.21), (7.22) and Theorem 7.1.

(iii.4) For \(x\in (-1-\delta ,-1)\), by (6.24) we note that \((M_p)_{11}e^{ng}\) and \((M_p)_{11}e^{n(g-l)}\) in (7.23) and (7.24) have the same formulations as (7.30) and (7.31), which consequently implies (6.34) and (6.35). The proof of Lemma 6.4 is complete. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D. Gaussian Fluctuations and Moderate Deviations of Eigenvalues in Unitary Invariant Ensembles. J Theor Probab 32, 1647–1687 (2019). https://doi.org/10.1007/s10959-019-00939-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-019-00939-4

Keywords

Mathematics Subject Classification (2010)

Navigation