Skip to main content
Log in

Double Asymptotic for Random Walks on Hypercubes

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We consider the sum of the coordinates of a simple random walk on the K-dimensional hypercube and prove a double asymptotic of this process, as both the time parameter n and the space parameter K tend to infinity. Depending on the asymptotic ratio of the two parameters, the rescaled processes converge toward either a “stationary Brownian motion,” an Ornstein–Uhlenbeck process or a Gaussian white noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baróti, G.: Limit distributions for Ehrenfest’s urn model. In: Mogyoródi, J., Vincze, I., Wertz, W. (eds.) Statistics and Probability (Visegrád, 1982), pp. 1–8. Riedel, Dordrecht (1984)

  2. Boissard, E., Cohen, S., Espinasse, T., Norris, J.: Diffusivity of a random walk on random walks. Random Struct. Algorithms 47(2), 267–283 (2015)

    Article  MathSciNet  Google Scholar 

  3. Chafaï, D., Malrieu, F.: Recueil de Modèles Aléatoires, Volume 78 of Mathématiques et Applications. Springer, Berlin (2016)

    Book  Google Scholar 

  4. Ethier, S.N., Kurtz, T.G.: Markov Processes—Characterization and Convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York (1986)

    Google Scholar 

  5. Gnedenko, B.V., Kolmogorov, A.N.: Limit Distributions for Sums of Independent Random Variables. Addison-Wesley, Reading (1968)

    Google Scholar 

  6. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, Volume 113 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (1991)

    Google Scholar 

  7. Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability, vol. 1. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

Download references

Acknowledgements

I greatly thank my Ph.D. advisor Serge Cohen for his constant help, and also Laurent Miclo, Charles Bordenave and Philippe Berthet for fruitful discussions and advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Montégut.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Proof of Lemma 1

Appendix 1: Proof of Lemma 1

Recall Lemma 1 which comes from the “Fast regime” section:

Lemma 1

Let \(\left( \xi _i\right) _{i\in {\mathbb {N}}}\) be i.i.d. Rademacher random variables and \(\left( \mathbf{t }_K\right) _{K\ge 1}\) a sequence of random vectors in \(\left( {\mathbb {R}} _+\right) ^k\) independent from \(\left( \xi _i\right) _{i\in {\mathbb {N}}}\). Define for all \(K\ge 1\) and \(\mathbf{s }=(s_1,\ldots ,s_k)\in \left( {\mathbb {R}} _+\right) ^k\):

$$\begin{aligned} T_K(\mathbf{s })=\left( \frac{1}{\sqrt{K}}\sum _{i=1}^{\lfloor Ks_j\rfloor }\xi _i\right) _{j\in [k]}. \end{aligned}$$

If there exists a deterministic \(\mathbf{t }=(t_1,\ldots ,t_k)\in \left( {\mathbb {R}} _+\right) ^k\) such that \(\mathbf{t }_K\overset{{\mathbb {P}}}{\underset{K\rightarrow \infty }{\longrightarrow }}\mathbf{t }\), then:

$$\begin{aligned} T_K(\mathbf{t }_K)\overset{\mathcal {D}}{\underset{K\rightarrow \infty }{\longrightarrow }}\left( W_{t_j}\right) _{j\in [k]} \end{aligned}$$

where \(\left( W_s\right) _{s\in {\mathbb {R}} _+}\) denotes a standard Brownian motion starting from 0.

For all \(\mathbf{x }=(x_1,\ldots ,x_k)\in {\mathbb {R}} ^k\) we will consider the following norm:

$$\begin{aligned} \vert \vert \mathbf{x }\vert \vert = \sup _{i\in [k]} \vert x_i\vert . \end{aligned}$$

For the sake of simplicity we will set \({\mathbb {R}} _+^k\overset{\mathrm{def}}{=}\left( {\mathbb {R}} _+\right) ^k\), and for every \({\mathbb {R}} ^k\)-valued process \(\left( X_t\right) _{t\ge 0}\) and \(\mathbf{t }=(t_1,\ldots ,t_k)\in {\mathbb {R}} _+^k\), we will note \(X_\mathbf{t }\overset{\mathrm{def}}{=}\left( X_{t_1},\ldots ,X_{t_k}\right) \).

In order to prove Lemma 1 we will use several times the following result:

Lemma 4

Let \(\left( W_t\right) _{t\in {\mathbb {R}} _+}\) be a standard Brownian motion starting from 0. Then for all \(\varepsilon >0\) and \(d>0\) there exists \(\delta >0\) such that:

$$\begin{aligned} \vert \vert \mathbf{x }-\mathbf{y }\vert \vert \le \delta \ \Rightarrow \ {\mathbb {P}} (\vert \vert W_\mathbf{x }-W_\mathbf{y }\vert \vert > d)< \varepsilon . \end{aligned}$$

Proof

$$\begin{aligned} {\mathbb {P}} (\vert \vert W_\mathbf{x }-W_\mathbf{y }\vert \vert> d)&= {\mathbb {P}} \left( \sup _{1\le i\le k} \vert W_{x_i}-W_{y_i} \vert> d\right) \\&\le \sum _{i=1}^k {\mathbb {P}} (\vert W_{x_i}-W_{y_i} \vert> d) \\&= \sum _{i=1}^k {\mathbb {P}} (\vert N_i \vert > d) \end{aligned}$$

where \(N_i\) is a \(\mathcal {N}(0,\vert x_i-y_i\vert )\) random variable. One can easily find a suitable \(\delta >0\) such that:

$$\begin{aligned} \vert x_i-y_i\vert \le \delta \ \Rightarrow \ {\mathbb {P}} (\vert N_i\vert > d)< \frac{\varepsilon }{k} \end{aligned}$$

and get the result using the fact that \(\vert \vert \mathbf{x }-\mathbf{y }\vert \vert \le \delta \Rightarrow \vert x_i-y_i\vert \le \delta \) for all \(i\in [k]\). \(\square \)

Let us get back to the main proof. Assuming the premises of Lemma 1 we want to prove that for every function \(f:{\mathbb {R}} _+^k\rightarrow {\mathbb {R}} \) bounded and uniformly continuous we have:

$$\begin{aligned} {\mathbb {E}} [f(T_K(\mathbf{t }_K))]\underset{K\rightarrow \infty }{\longrightarrow }{\mathbb {E}} [f(W_\mathbf{t })]. \end{aligned}$$

Let \(\varepsilon >0\). For all \(\delta > 0\) we have:

Since \(\mathbf{t }_K\overset{{\mathbb {P}}}{\underset{K\rightarrow \infty }{\longrightarrow }}\mathbf{t }\) and then \(\forall \ \delta >0\) there exists \(N_1(\varepsilon ,\delta )\in {\mathbb {N}} \) such that for every \(K\ge N_1(\varepsilon ,\delta )\) we have:

$$\begin{aligned} {\mathbb {P}} (\vert \vert \mathbf{t }_K-\mathbf{t }\vert \vert >\delta ) \le \frac{\varepsilon }{8\vert \vert f\vert \vert _\infty }. \end{aligned}$$
(9)

Now we split the other term in two parts (which will be dominated separately):

Let us define the functions \(\varphi _K\) and \(\varphi \) by:

$$\begin{aligned} \varphi _K(\mathbf{s })={\mathbb {E}} [f(T_K(\mathbf{s }))] \quad \text {and}\quad \varphi (\mathbf{s })={\mathbb {E}} [f(W_\mathbf{s })] \ \text {for } \mathbf{s }\in {\mathbb {R}} _+^k. \end{aligned}$$

Proposition 5

The functions \(\left( \varphi _K\right) _{K\ge 1}\) converge uniformly on every compact of \({\mathbb {R}} _+^k\) to the function K.

Proof

We already know via the Donsker’s theorem that the sequence \(\left( \varphi _K\right) _{K\ge 1}\) converges pointwise to \(\varphi \) (see, for instance, [6]).

Let \(S\subset {\mathbb {R}} _+^k\) compact; for all \(\delta >0\), there exists a finite subset \(\mathcal {M}\subset S\) such that:

$$\begin{aligned} \forall \ \mathbf{x }\in S \ \exists \ \mathbf{y }\in \mathcal {M}: \vert \vert \mathbf{x }-\mathbf{y }\vert \vert \le \delta . \end{aligned}$$

Let \(\varepsilon >0\) and \(\mathbf{t }\in S\), and choose \(\mathbf{s }\in \mathcal {M}\) such that \(\vert \vert \mathbf{t }-\mathbf{s }\vert \vert \le \delta \). We then get:

$$\begin{aligned} \vert \varphi _K(\mathbf{t })-\varphi (\mathbf{t })\vert \le \vert \varphi _K(\mathbf{t })-\varphi _K(\mathbf{s })\vert + \vert \varphi _K(\mathbf{s })-\varphi (\mathbf{s })\vert + \vert \varphi (\mathbf{s })-\varphi (\mathbf{t })\vert . \end{aligned}$$
(10)

Let us dominate the first term. The function f being uniformly continuous, there exists \(d >0\) such that \(\vert \vert \mathbf{x }-\mathbf{y }\vert \vert \le d \Rightarrow \vert f(\mathbf{x })-f(\mathbf{y })\vert < \varepsilon /6\). Then we get:

But we can see in the proof of Theorem 4.20 (p. 70) from [6] that \(\forall \ c >0\) et \(\forall \ D>0\):

$$\begin{aligned} \lim _{\delta \rightarrow 0} \sup _{n\ge 1} {\mathbb {P}} \left( \max _{\begin{array}{c} \vert x-y\vert \le \delta \\ 0\le x,y \le D \end{array}} \left| T_K(x)-T_K(y)\right| >c\right) =0. \end{aligned}$$

So there exists some \(\delta _1 (\varepsilon ,d)>0\) such that \(\forall \ \delta \le \delta _1 (\varepsilon ,d)\):

$$\begin{aligned} \sup _{n\ge 1} {\mathbb {P}} \left( \max _{\begin{array}{c} \vert x-y\vert \le \delta \\ 0\le x,y \le D \end{array}} \left| T_K(x)-T_K(y)\right| >d\right) \le \frac{\varepsilon }{12\vert \vert f\vert \vert _\infty k} \end{aligned}$$

and then, setting \(D(S)\overset{\mathrm{def}}{=}\underset{\mathbf{z }\in S}{\sup }\vert \vert \mathbf{z }\vert \vert \), if we choose \(\delta \) smaller than \(\delta _1 (\varepsilon ,d)\) we have \(\forall \ K\ge 1\):

$$\begin{aligned} {\mathbb {P}} (\vert \vert T_K(\mathbf{t })-T_K(\mathbf{s })\vert \vert> d)&\le k \times {\mathbb {P}} \left( \max _{\begin{array}{c} \vert x-y\vert \le \delta \\ 0\le x,y \le D(S) \end{array}} \left| T_K(x)-T_K(y)\right| >d\right) \\&\le \frac{\varepsilon k}{12\vert \vert f\vert \vert _\infty k}=\frac{\varepsilon }{12\vert \vert f\vert \vert _\infty }. \end{aligned}$$

We finally get:

$$\begin{aligned} \vert \varphi _K(\mathbf{t })-\varphi _K(\mathbf{s })\vert \le {}&\frac{\epsilon }{6}{\mathbb {P}} (\vert \vert T_K(\mathbf{t })-T_K(\mathbf{s })\vert \vert \le d) \\&+2\vert \vert f \vert \vert _\infty {\mathbb {P}} (\vert \vert T_K(\mathbf{t })-T_K(\mathbf{s })\vert \vert > d) \\ \le {}&\frac{\epsilon }{6} + 2\vert \vert f \vert \vert _\infty \frac{\varepsilon }{12\vert \vert f\vert \vert _\infty } =\frac{\varepsilon }{3}. \end{aligned}$$

Let us deal with the second term in (10), namely \(\vert \varphi _K(\mathbf{s })-\varphi (\mathbf{s })\vert \). Since \(\varphi _K\) converges pointwise to \(\varphi \), for every \(\mathbf{x }\in {\mathbb {R}} _+^k\) there exists \(N_\mathbf{x }(\varepsilon )\) such that:

$$\begin{aligned} K\ge N_\mathbf{x }(\varepsilon ) \Longrightarrow \vert \varphi _K(\mathbf{x })-\varphi (\mathbf{x })\vert \le \frac{\varepsilon }{3}. \end{aligned}$$

We just have to take K greater than \(N(\varepsilon ,\delta )\overset{\mathrm{def}}{=}\underset{\mathbf{x }\in \mathcal {M}}{\max }\ N_\mathbf{x }(\varepsilon )\) to get:

$$\begin{aligned} \vert \varphi _K(\mathbf{s })-\varphi (\mathbf{s })\vert \le \frac{\varepsilon }{3}. \end{aligned}$$

For the third term in (10) we use again the uniform continuity of f to get the following:

Using Lemma  we find that \(\exists \ \delta _2(\varepsilon ,d)\) such that:

$$\begin{aligned} \delta \le \delta _2(\varepsilon ,d) \Longrightarrow {\mathbb {P}} (\vert \vert W_\mathbf{s }-W_\mathbf{t }\vert \vert > d) <\frac{\varepsilon }{12\vert \vert f\vert \vert _\infty }. \end{aligned}$$

We then have:

$$\begin{aligned} \vert \varphi (\mathbf{s })-\varphi (\mathbf{t })\vert\le & {} \frac{\varepsilon }{6}{\mathbb {P}} (\vert \vert W_\mathbf{s }-W_\mathbf{t }\vert \vert \le d) + 2\vert \vert f\vert \vert _\infty {\mathbb {P}} (\vert \vert W_\mathbf{s }-W_\mathbf{t }\vert \vert > d)\\\le & {} \frac{\varepsilon }{6} + 2\vert \vert f\vert \vert _\infty \frac{\varepsilon }{12\vert \vert f \vert \vert _\infty } =\frac{\varepsilon }{3}. \end{aligned}$$

Grouping all these results in (10) we get that if \(\delta \le \min (\delta _1(\varepsilon ,d),\delta (\varepsilon ,d))\) then \(\forall \ K\ge N(\varepsilon ,\delta )\) we have:

$$\begin{aligned} \sup _{\mathbf{t }\in S}\vert \varphi _K(\mathbf{t })-\varphi (\mathbf{t })\vert \le \frac{\varepsilon }{3}+\frac{\varepsilon }{3}+\frac{\varepsilon }{3}=\varepsilon . \end{aligned}$$

\(\square \)

Using the previous proposition we get that for every S compact subset of \({\mathbb {R}} _+^k\) there exists \(N(\varepsilon ,S)\) such that \(\forall \ \mathbf{s }\in S\) and \(\forall \ K\ge N(\varepsilon ,S)\):

$$\begin{aligned} \vert \varphi _K(\mathbf{s })-\varphi (\mathbf{s })\vert \le \frac{\varepsilon }{4}. \end{aligned}$$

Using the independence of the \((\mathbf{t }_K)_K\) and the \((\xi _i)_i\) we can write that:

$$\begin{aligned} {\mathbb {E}} [f(T_K(\mathbf{t }_K))]&= {\mathbb {E}} [{\mathbb {E}} [f(T_K(\mathbf{t }_K))\vert \mathbf{t }_K]] = {\mathbb {E}} [\varphi _K(\mathbf{t }_K)]. \end{aligned}$$

Then, since the ball of radius \(\delta \) centered on \(\mathbf{t }\) is compact, there exists an integer \(N_2(\varepsilon ,\delta )\overset{\mathrm{def}}{=}N(\varepsilon ,B(\mathbf{t },\delta ))\) such that for all \(K\ge N_2(\varepsilon ,\delta )\) we have:

(11)

Now we have to dominate . Using the uniform continuity of f we know there exists some \(d>0\) such that:

$$\begin{aligned} \vert \vert \mathbf{x }-\mathbf{y }\vert \vert \le d \Rightarrow \vert f(\mathbf{x })-f(\mathbf{y })\vert \le \frac{\varepsilon }{4}. \end{aligned}$$

We then have:

(12)

Using Lemma , for all \(d>0\) there exists \(\delta (\varepsilon , d) >0\) small enough such that the following holds:

$$\begin{aligned} {\mathbb {P}} (\vert \vert \mathbf{t }_K-\mathbf{t }\vert \vert \le \delta ,\vert \vert W_{\mathbf{t }_K}-W_\mathbf{t }\vert \vert > d)\le \frac{\varepsilon }{8\vert \vert f \vert \vert _\infty }. \end{aligned}$$
(13)

In a nutshell if we sum up all the previous step, we find that for every bounded continuous function f and \(\forall \ \varepsilon >0\), we can choose \(d\le d(\varepsilon )\) such that (12) holds, \(\delta \le \delta (\varepsilon ,d)\) to have (13), and then, \(K\ge \max (N_1(\varepsilon ,\delta ),N_2(\varepsilon ,\delta )\) to get (9) and (11), which finally yields:

and thus \(T_K(\mathbf{t }_{\mathbf{K }}) \overset{\mathcal {D}}{\underset{K\rightarrow \infty }{\longrightarrow }}W_\mathbf{t }\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montégut, F. Double Asymptotic for Random Walks on Hypercubes. J Theor Probab 32, 2044–2065 (2019). https://doi.org/10.1007/s10959-019-00931-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-019-00931-y

Keywords

Mathematics Subject Classification (2010)

Navigation